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Preface 

Although face recognition has been actively studied over the past decade, 
the state-of-the-art recognition systems yield satisfactory performance only un­
der controlled scenarios and recognition systems degrade significantly when 
confronted with unconstrained situations. 

Examples of unconstrained conditions include illumination and pose varia­
tions, video sequences, expressions, aging, and so on. Recently, researchers 
have begun to investigate face recognition under unconstrained conditions. For 
example, as video sequence becomes ubiquitous due to advances in digital 
imaging devices and the advent of the Internet era, face recognition based on 
video sequences is gaining more attention. Face recognition under illumination 
and pose variations remains a big challenge to researchers. 

The goal of this book is to provide a comprehensive review of unconstrained 
face recognition, especially face recognition from video, and to assemble de­
scriptions of novel approaches that are able to recognize human faces under 
various unconstrained situations. The underlying theme of these approaches 
is that, unlike conventional face recognition algorithms, they exploit the in­
herent characteristics of the unconstrained situation and gain improvements in 
recognition performance when compared with conventional algorithms. For 
instance, generalized photometric stereo combines physics-based illumination 
model with statistical modeling to address face recognition under illumination 
variation. Simultaneous tracking and recognition employs the temporal infor­
mation embedded in a video sequence and thus improves both tracking accuracy 
and recognition performance. 

The book is organized into five parts: 1) Fundamentals, preliminaries, and 
reviews; II) Face recognition under variations; III) Face recognition via kernel 
learning; IV) Face tracking and recognition from video; and V) Future direc­
tions. Part I, consisting of two chapters, addresses fimdamental issues of face 
recognition, especially under unconstrained scenarios, and provides necessary 
background for following the discussions in subsequent parts and an up-to-date 
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survey of unconstrained face recognition. Part II, consisting of four chapters, 
presents face recognition approaches that are able to handle variations due to 
illumination, pose, and aging. Part III, consisting of two chapters, studies face 
recognition from a viewpoint of an appearance manifold whose nonlinearity 
is characterized via two kernel learning methods: computing probabilistic dis­
tances in reproducing kernel Hilbert space and matrix-based kernel methods. 
Part IV, consisting of three chapters, presents adaptive visual tracking, simul­
taneous tracking and recognition, and a unifying framework of probabilistic 
identity characterization. A detailed description of the organization and the 
contents of each chapter are given in Section 1.2. 

The book is accessible to a wide audience since only elementary level of 
linear algebra, probability and statistics, and signal processing is assumed. 
Graduate students and researchers unfamiliar with face recognition can use the 
book to quickly comprehend the state-of-the-art of unconstrained face recog­
nition. Also the book serves as a starting point for them to embark research on 
face recognition. Instructors can use the book as a textbook or for supplemen­
tary reading for graduate courses on biometric recognition, human perception, 
computer vision, or relevant seminars. Professional practitioners efface recog­
nition and other biometrics can use the book as a reference and directly extract 
interested algorithms for their applications. 

We are indebted to numerous friends and colleagues that made the book pos­
sible. We first thank Guarav Aggarwal for providing materials on illumination-
invariant face recognition in the presence of multiple light sources and Narayanan 
Ramanathan for writing the part of face recognition across aging progression. 
Most of the work was done when SKZ and WZ were at the Center for Au­
tomation Research (CfAR), University of Maryland. SKZ thanks his then lab 
colleagues: Amit Roy-Chowdhury, Naresh Contoor, Jian Li, Jian Liang, Haiy-
ing Liu, Amit Kale, Gang Qian, Jie Shao, Namrata Vaswani, Zhanfen Yue, and 
Qinfen Zheng. 

SHAOHUA KEVIN ZHOU, RAMA CHELLAPPA, AND WENYI ZHAO 



PARTI 

FUNDAMENTALS, PRELIMINARIES AND REVIEWS 



Chapter 1 

FUNDAMENTALS 

Identifying people from faces is an effortless task for humans. Is it the 
same for computers? This is the central issue defining the field of automatic 
face recognition [22, 23, 24, 25, 26, 27, 28, 29, 134] (also referred to as face 
recognition in the present book), one of the most active research areas in the 
emerging field of biometrics. 

Over the past decade, face recognition has attracted substantial attention from 
various disciplines and seen a tremendous growth in the literature. Below, we 
present an overview of face recognition from the biometric, experimental, and 
theoretical perspectives. 

1.1 Overview 
1.1.1 Biometric perspective 

Face is a biometric [33]. As a consequence, face recognition finds wide 
applications in authentication, security, and so on. One potential application is 
in the recently deployed US-VISIT system [32] by the Department of Homeland 
Security (DHS), collecting vistors' fingerprints and face images. 

Biometric signatures enable automatic identification of a person based on 
physiological or behavioral characteristics [31, 30]. Physiological biometrics 
are biological/chemical traits that are innate or naturally grown, while behav­
ioral biometrics are mannerisms or traits that are learned or acquired. Table 1.1 
lists commonly used biometrics. Some introductory discussions on biometrics 
may be found in [30, 31, 33, 34]. 

Biometrics technologies are becoming the foundations of an extensive array 
of highly secure identification and personal verification solutions. Compared 
with conventional identification and verification methods based on personal 
identification numbers (PINs) or passwords, biometrics technologies offer some 
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Type Examples 

Physiological biometrics 

Behavioral biometrics 

Body odor, DNA, face, fingerprint, 
hand geometry, iris, pulse, retinal 
Face, gait, handwriting, signature, voice 

Table I.L A list of biometrics. 

unique advantages. First, biometrics are individualized traits while passwords 
may be used or stolen by someone other than the authorized user. Also, a 
biometric is very convenient since there is nothing to carry or remember. In 
addition, biometric technology is becoming more accurate and inexpensive. 

Among all biometrics listed in Table 1.1, face biometric is unique because 
face is the only biometric belonging to both physiological and behavioral cat­
egories. While the physiological part of the face biometric has been widely 
researched in the literature, the behavioral part is not yet fully investigated. 
In addition, as reported in [35, 36], face has advantage over other biometrics 
because it is a natural, non-intrusive, and easy-to-use biometric. For example 
[35], among the six biometrics efface, finger, hand, voice, eye, and signature in 
Figure 1.1, the face biometric ranks first in the compatibility evaluation of a ma­
chine readable travel document (MRTD) system on the basis of six criteria: en­
rollment, renewal, machine-assisted identity verification requirements, redun­
dancy, public perception, and storage requirements and performance. Probably 
the most important feature of a biometric is its ability to collect the signature 
from non-cooperating subjects. 

Besides applications related to identification and verification such as access 
control, law enforcement, ID and licensing, surveillance, etc., face recognition 
is also usefial in human-computer interaction, virtual reality, database retrieval, 
multimedia, computer entertainment, etc. See [29, 48] for a review of face 
recognition applications. 

1.1.2 Experimental perspective 
Face recognition mainly involves the following three tasks [61]: 

• Verification. The recognition system determines if the query face image and 
the claimed identity match. 

Identification. The recognition system determines the identity of the query 
face image by matching it with a database of images with known identities, 
assuming that the identity of the quest face image is inside the database. 
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Face Finger Hand Voice Eye Signature 

Figure 1.1. Comparison of various biometric features based on MRTD compatibility (from 
[35]), 

Watch list. The recognition system first determines if the identity of the 
query face image is in the stored watch list and, if yes, then identifies the 
individual. 

Figure 1.2 illustrates the above three tasks and corresponding statistics used for 
evaluation. Among three tasks, the watch list task is the most difficult one. 

The present book focuses only on the identification task. In the face recog­
nition literature, there is a face recognition test protocol FERET [60] widely 
followed by researchers for evaluating the performance of face recognition sys­
tems. FERET stands for 'facial recognition technology'. In most experiments 
discussed in this book, we also follow the FERET protocol. 

The FERET protocol assumes the availability of the following three sets, 
namely a training set, a gallery set, and a probe set. The training set is provided 
for the recognition algorithm to learn the characteristic features. The gallery and 
probe sets are used in the testing stage. The gallery set contains images with 
known identities and the probe set with unknown identities. The algorithm 
associates descriptive features with images in the gallery and probe sets and 
determines the identities of the probe images by comparing their associated 
features with features associated with gallery images. 
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Figure 1.2. Three face recognition tasks: verification, identification, watcli list (courtesy of 
P.J.Pliillips[61]). 

1.1.3 Theoretical perspective 
Face recognition is by nature an interdisciplinary research area, tied to many 

research fields, ranging from pattern recognition, computer vision, graphics, and 
image processing/understanding to statistical computing and machine learning. 
In addition, automatic face recognition designs are often guided by the psy­
chophysical and neural studies. A good summary of research on face percep­
tion is presented in [29, 37, 40]. We now focus on the theoretical implications 
of pattern recognition for the special task of face recognition. 

We present a three-level hierarchy for understanding the face recognition 
problem, as shown in Figure 1.3. The three levels characterize general patterns, 
visual patterns, and face patterns, each associated with a corresponding theory 
of recognition. Accordingly, face recognition approaches can be grouped into 
three categories. 

General pattern and pattern recognition 

General pattern lays the foundation of the hierarchy. Because face is first a 
general pattern, any pattern recognition theory [7] can be directly applied to a 
face recognition problem. In general, a vector representation is used in pattern 
recognition. A common way of deriving a vector representation from a 2D face 
image, say of size M x A'̂ , is through a 'vectorization' operator that stacks the 
pixels as an MA'' x 1 vector. Obviously, given an arbitrary MN x 1 vector, it 
can be decoded into an M x iV image by reversing the above 'vectorization' 
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Figure 1.3. A hierarchy of face pattern and face recognition. 

operator. Such a vector representation corresponds to the holistic representation 
mentioned in the psychophysics literature [38, 39]. 

Subspace methods are pattern recognition techniques widely invoked in var­
ious face recognition approaches. Two well-known appearance-based recogni­
tion schemes are the principal component analysis (PCA) [12, 50] and linear 
discriminant analysis (LDA) [7], Principal component analysis performs an 
eigen-decomposition of the covariance matrix and consequently minimizes the 
reconstruction error in the mean square sense. Linear discriminant analysis 
minimizes the within-class scatter while maximizing the between-class scatter. 
The PC A approach used in face recognition is called the 'Eigenface' approach 
[64]. The LDA approach used in face recognition is called the 'Fisherface' 
approach [44] since LDA is also commonly referred to as Fisher discriminant 
analysis. LDA for face recognition was also independently proposed in [47]. 
Further PCA and LDA are combined (LDA after PCA) as in [67] to yield an 
improved recognition scheme. Other subspace methods such as independent 
component analysis (ICA) [22, 43, 243], local feature analysis (LFA) [253], 
probabilistic subspace [56, 57, 58], multi-exemplar discriminant analysis [70] 
have been used in face recognition. A comparison of these subspace methods is 
reported in [58,68], Other than the subspace methods, classical pattern recogni­
tion tools such as neural networks [53], learning methods [59], and evolutionary 
pursuit/genetic algorithms [54] have also been applied to face recognition. 

One concern in a general pattern recognition problem is the 'curse of dimen­
sionality' since usually M and N themselves are quite large. Practical face 
recognition systems store only a small number of samples per subject. This 
further worsens the 'curse of dimensionality' problem. 
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Face recognition also differs from general pattern recognition problem in 
many aspects. Some of the differences are discussed below. 

Visual pattern and visual recognition 

In the middle of the pyramid in Figure 1.3 sits the visual pattern layer. A 
face is a visual pattern in the sense that it is a 2D appearance of a 3D object 
captured by an imaging system. Certainly, visual appearance is affected by the 
configuration of an imaging system. 

There are two distinct characteristics of the imaging system: photometric 
and geometric. 

• Photometric characteristics are related to the light sources distributed in the 
scene. Figure 1.4 shows the face images of a subject captured under varying 
illumination conditions. Numerous models have been proposed to describe 
the illuminating phenomenon. In addition to coding information such as 
light source direction and intensity, an illumination model also characterizes 
the object surface material properties. 

• Geometric characteristic deals with the camera properties and the relative 
positioning of the camera with respect to the object. Camera properties in­
clude camera intrinsic parameters and camera imaging models. The imaging 
models widely studied in the computer vision literature are orthographic, 
scaled orthographic, and perspective models. Because the perspective model 
requires depth information, the orthographic or scaled orthographic model 
is used more often in the face recognition community. The relative posi­
tioning of the camera and the object results in pose variation, a key factor 
determining how the 2D appearances are produced. Figure 1.4 shows the 
face images of one object captured at different poses. 

Understanding photometric and geometric characteristics has been a long 
standing problem in the computer vision literature, which is mostly reflected 
by researches in visual recognition under illumination and pose variations. A 
comprehensive review of the visual recognition literature is beyond the scope 
of the book. However, face recognition methods that address the photometric 
and geometric characteristics are still at a nascent stage of development and 
much more work needs to be done. 

Approaches to face recognition under illumination variation are usually 
treated as extensions of research efforts on illumination models. For example, 
if a simplified Lambertian reflectance model ignoring shadow pixels [150, 161, 
168] is used, a rank-3 subspace can be constructed to cover the appearances 
arbitrarily illuminated by a distant point source. Similarly low-dimensional 
subspaces [143, 144] can be found using a Lambertian model with attached 
shadows. Face recognition can be performed by checking if a query face im­
age lies in the object-specific illumination subspace. To generalize from the 
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Figure 1.4. One PIE [85] individual under different illumination and poses. 

object-specific illumination subspace to a class-specific illumination subspace, 
bilinear models are used in [84, 214, 95]. Most face recognition approaches 
across pose variation use view-based appearance representation [73, 76, 81]. 
Face recognition across illumination and poses is more difficult when compared 
to recognition with the presence of either pose or illumination variation. Of 
the many proposed approaches in the literature including [72, 77, 96], the 3D 
morphable model [72] yields the best recognition performance. The feature-
based approach [51] is reported to be partially robust to illumination and pose 
variations. 

An important feature of a visual pattern is its presence in video. The ubiqui-
tousness of video sequences calls upon recognition algorithms based on videos. 
Because a video sequence is a collection of still images, face recognition from 
still images can be applied on a frame-by-frame basis. However, an important 
property of a video sequence is its temporal dimension. Recent psychophysical 
and neural studies [39,41] demonstrate the role of movement in face recogni­
tion: Famous faces are easier to recognize when presented in moving sequences 
than in still photographs, even under a range of different types of degrada­
tions. Computational approaches utilizing such temporal information include 
[112, 123, 124, 129,206, 133]. Figure 1.6 shows the results of face tracking in 
a video sequence captured in an office environment [109]. Clearly, due to free 
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movement of the human face and an uncontrolled environment, issues like illu­
mination and pose variations still exist. Localizing faces or face segmentation 
in a cluttered environment in video sequences is also very challenging. 

In surveillance scenarios, further challenges arise due to poor video quality 
and low resolution. For example, the face region can be as small as 15 x 15, 
while most feature-based approaches [51, 72] need as many as 128 x 128 
pixels. However, video provides multiple observations linked by their temporal 
continuity. 

Face pattern and face recognition 

At the top of the pyramid lies the face pattern. The face pattern specializes 
the visual pattern by letting the object be a human face. Therefore, face-specific 
properties or characteristics should be taken into account when performing face 
recognition. 

(a) 

l̂ -
• ( b ) 

Figure 1.5. (a) Appearances of one individual with different facial expressions (from [55]). (b) 
Appearances of one individual at different ages (from [136]), 

Deformation. Humans express emotions through facial expressions, yield­
ing nonrigid deformations of facial images. The non-rigidity is of very high 
degree of freedom and exacerbates the recognition task. Figure 1.5(a) shows 
the face images of a person exhibiting different expressions. While face ex­
pression analysis has attracted a lot of attention [45, 62, 63], recognition 
under expression variation has not been fiilly explored. 

Aging. Face appearances vary significantly with aging and such variations 
are specific to an individual. As a result, theoretical modeling of aging [136] 
is very difficult. Figure 1.5(b) shows the face images of a person at different 
ages. 

Face surface. Onespeciality of face surface is its bilateral symmetry. Sym­
metry constraint has been widely exploited in [162, 93, 95]. In addition, 
surface integrability is an inherent property of any surface, which has also 
been used in [149, 168, 213, 95]. 
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• Self-similarity. There is a strong visual similarity among face images of 
different individuals. Geometric positioning of facial features such as eyes, 
noses, mouths, etc. are alike across individuals. Early face recognition 
approaches in the 70's [26,49] used the distances between feature points to 
describe the face and achieved some success. Also, face surface materials 
properties are similar within the same race. As a consequence of visual 
similarity, the 'shapes' of the face appearance manifolds belonging to dif­
ferent subjects are similar. This is the basis of approaches [57, 58, 70] that 
attempt to capture the 'shape' characteristics by constructing the so-called 
intra-person space. 

• Makeup, cosmetic, etc. There factors are specific to an individual and so 
are unpredictable. The effect of glasses has been studied in [44]; effects 
induced by other factors have not been widely investigated. 

Face appearances of the same individual under variations in illumination, 
pose, deformation, aging, etc. lie in a nonlinear manifold. Figure 1.6 visualizes 
such a manifold by projecting the appearances of the top row into top three 
principal components. Manifold characterization can be done in various ways. 
One way is to embed a manifold in a low-dimensional space [251, 256]. The 
other way is to learn the nonlinearity using machine leaming techniques [9,21, 
65, 263, 268, 270, 272, 276, 277, 278]. 

1.2 Unconstrained Face Recognition 
State-of-the-art face recognition systems yield satisfactory performance un­

der controlled conditions. To be specific, the face images are typically acquired 
in frontal views and are often illuminated by a frontal light source. These condi­
tions pose strong restrictions on patterns possibly acquired. In other words, the 
clustering nature of the produced patterns (usually tightly clustered) is amenable 
for classical pattern analysis. Therefore, most face recognition approaches lie 
in the first level of the hierarchy. Unfortunately, recognition performance de­
grades significantly when face recognition systems are presented with patterns 
that go beyond these controlled conditions. 

Recently, researchers have begun to investigate face recognition under un­
constrained conditions. Examples of unconstrained conditions include illumi­
nation and pose variations, video sequences, expressions, aging, and so on. In 
general, recognition approaches addressing the second and third levels of the 
hierarchy can be considered to be addressing the unconstrained face recognition 
problem. 

In this book, we present several unconstrained face recognition approaches. 
The book is organized as follows. Part I presents fimdamentals, preliminaries, 
and reviews of face recognition. Parts II, III and IV discuss numerous face 
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•!W . ' - T 

Figure 1.6. Face appearances in a video sequences, forming a nonlinear manifold. 

recognition algorithms: Part II on Face Recognition under Variations, Part 
III on Face Recognition via Kernel Learning, and Part IV on Face Tracking 
and Recognition from Videos. Summary of the book and future directions are 
presented in Part V. 

1.2.1 Face recognition under variations 
Part 11 of the book studies face recognition under illumination, pose, and ag­

ing variations, which are related to the second level of Figure 1.3. In Chapter 3, 
we present a general theory oi symmetric shape from shading that overcomes the 
challenges present in traditional shape from shading(SFS) algorithms. In Chap­
ter 4, we present a generalized photometric stereo algorithm for recognizing 
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faces under illumination variation and then in Chapter 5 an illuminating light 
field algorithm for recognizing faces under illumination and pose variations. 
Chapter 6 addresses issues related to facial aging. 

Chapter 3 studies the SFS, that is to infer the 2.5D structure of a object from 
its shading information/image [151, 153, 10]. This is an ill-posed problem in 
general. To reduce the ill-posedness of SFS, we impose symmetry cue for sym­
metric objects by introducing the self-ratio image. This concept can be used to 
develop a new SFS algorithm referred to as symmetric SFS. We prove that un­
like typical SFS, the symmetric SFS has a unique (global) solution which can be 
simultaneously obtained at each point under the assumption of a C"^ surface. We 
then outline several computational algorithms to recover both shape and albedo 
and present experimental results. In addition, a model-based symmetric source-
from-shading algorithm is presented for improved source estimation. Finally, 
we discuss the extensions of symmetric SFS and applications of symmetry cue 
for image synthesis and view-synthesis of face images. 

Most photometric stereo algorithms employ a Lambertian reflectance model 
with a varying albedo field and involve the appearances of only one object. 
The recovered albedos and surface normals are object-specific and hence ap­
pearances not belonging to the object cannot be easily handled. In Chapter 4, 
we generalize photometric stereo algorithms to handle all appearances of all 
objects in a class, in particular the human face class, by assuming that albedos 
and surface normals of all objects in the class be rank-constrained, i.e. lie in 
a subspace. Rank constraints lead to a factorization of an observation matrix 
that consists of exemplar images of different objects under different illumina­
tions. To fully recover the subspace bases or class-specific albedos and surface 
normals, we employ integrability and face symmetry constraints and propose 
a linearized algorithm that takes into account the effects of the varying albedo 
field. We then apply the generalized photometric stereo algorithm for recog­
nizing faces under illumination variations. We obtain good recognition results 
using the PIE database that contains images illuminated by a single light source 
[94,95]. By a carefiil treatment of the nonlinearity of the Lambertian model, we 
successfully extend our algorithm to perform face recognition in the presence 
of multiple illumination sources. 

The illuminating light field algorithm presented in Chapter 5 is an image-
based method for face recognition across different illumination and different 
poses, where the term image-based means that no explicit prior 3D models are 
used. As face recognition under illumination and pose variations involves three 
factors, namely identity, illumination, and pose, generalizations in all these 
three factors are desired. The illuminating light field approach is able to gener­
alize in identity and illumination and handle a given set of poses. The proposed 
approach derives an identity signature that is illumination- and pose-invariant, 
where the identity is tackled using subspace encoding, the illumination is char-
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acterized using a Lambertian reflectance model, and the given set of poses is 
treated as a whole. Experimental results using the PIE database demonstrate 
the effectiveness of the proposed approach [97, 96]. 

Chapter 6 presents two topics related to facial aging: age estimation and 
face recognition across aging progression. Age estimation is solved using 
a general technique called image based regression using boosting methods. 
The proposed boosting regressor [260] overcomes various challenges in an 
image based regression problem, such as appearance variance, multiple outputs, 
and storage and computation requirement. For face recognition across aging 
progression, two similarity functions are proposed to match facial images taken 
at different ages. The first one is a classifier based on a Bayesian framework, 
following the spirit of [56]. The second one is a direct similarity function across 
different age groups based on eigen-analysis. 

1.2.2 Face recognition via kernel learning 

As mentioned earlier, the visual pattern lies in a nonlinear manifold, which is 
further complicated by face-specific characteristics. Nonlinear data modeling is 
an important research topic in machine learning. While linear techniques such 
as PCA and LDA utilize first- and second-order statistics, higher-order statistics 
play essential roles in nonlinear data modeling. Kernel learning methods (or 
kernel methods) are able to capture the higher-order statistical information. 

In the core of kernel learning methods lie two important components: a 
learning algorithm using linear geometry and a nonlinear feature space induced 
by a kernel function. Such a space is referred to as a reproducing kernel Hilbert 
space (RKHS) [18, 19, 21] in the literature. Kernel methods are linear learning 
algorithms operating on the nonlinear feature space. In Part III, we introduce 
two kernel learning methods: probabilistic distances in RKHS and matrix-based 
kernel subspace analysis 

Probabilistic distance measures are important quantities in many research 
areas. For example, the ChemoiTdistance (or the Bhattarchayya distance as its 
special example) is often used to bound the Bayes error in a pattern classification 
task and the KuUback-Leibler (KL) distance is a key quantity in information 
theory literature. However, computing these distances is a difficult task and 
analytic solutions are not available except under some special conditions. One 
popular example is the Gaussian density. The Gaussian density employs only 
up to second-order statistics and its modeling capacity is linear and hence rather 
limited. In Chapter 7, we enhance this capacity through a nonlinear mapping 
from original data space to RKHS, which is implemented using kernel em­
bedding. Using this nonlinear mapping, we study these probabilistic distances 
from a different perspective whose feasibility and efficiency are demonstrated 
using experiments on synthetic and face recognition examples [277]. 
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It is a common practice that a matrix, the de facto image representation, is 
first converted into a vector before fed into subspace analysis or Icemel method; 
however, the conversion ruins the spatial structure of the pixels that defines the 
image. In Chapter 8, we propose two kernel subspace methods that are directly 
based on the matrix representation, namely matrix-based kernel principal com­
ponent analysis (matrix KPCA) and matrix-based kernel linear discriminant 
component analysis (matrix KLDA). We show that, through an extended Gram 
matrix, the two proposed matrix-based kernel subspace methods generalize their 
vector-based counterparts and contain richer information. Our experiments on 
face recognition under illumination and pose variations [278] also confirm the 
advantages of the matrix-based kernel subspace methods over the vector-based 
ones. 

1.2.3 Face tracking and recognition from videos 
Video sequences are becoming ubiquitous due to the advances in digital 

imaging devices and the advent of internet era. A face in video sequences 
presents further challenges to recognition algorithms besides those common to 
face recognition from still images. 

In Chapter 9, we present an approach called adaptive visual tracking that 
incorporates appearance-adaptive models in a particle filter to realize robust vi­
sual tracking. Tracking needs modeling of inter-frame motion and appearance 
changes whereas recognition needs modeling of appearance changes between 
frames and gallery images. In conventional tracking algorithms, the appear­
ance model is either fixed or rapidly changing, and the motion model is simply 
a random walk with fixed noise variance. Also, the number of particles is typ­
ically fixed. All these factors make the visual tracker unstable. To stabilize the 
tracker, we propose the following features: an observation model arising from 
an adaptive appearance model, an adaptive velocity motion model with adap­
tive noise variance, and an adaptive number of particles. The adaptive-velocity 
model is derived using a first-order linear predictor based on the appearance 
difference between the incoming observation and the existing particle configu­
ration. Occlusion analysis is implemented using robust statistics. Experimental 
results [206, 200, 201] on tracking visual objects in long outdoor and indoor 
video sequences demonstrate the effectiveness and robustness of our tracking 
algorithm. 

In Chapter 10, recognition of human faces using a gallery of still images and 
a probe set of videos is systematically investigated using a probabilistic frame­
work called simultaneous tracking and recognition. In still-to-video recogni­
tion, where the gallery consists of still images, a time series state space model is 
proposed to fuse temporal information in a probe video, which simultaneously 
characterizes the kinematics and identity using a motion vector and an identity 
variable, respectively. The joint posterior distribution of the motion vector and 
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the identity variable is estimated at each time instant and then propagated to 
the next time instant. Marginalization over the motion vector yields a robust 
estimate of the posterior distribution of the identity variable. A computation­
ally efficient sequential importance sampling (SIS) algorithm is presented for 
estimating the posterior distribution. Empirical results demonstrate that, due 
to the propagation of the identity variable over time, a degeneracy in posterior 
probability of the identity variable is achieved to give improved recognition. Ex­
periments performed [122, 123, 124, 125, 126, 127, 128] using images/videos 
with pose/illumination variations illustrate the effectiveness of this approach 
for the still-to-video scenario with appropriate model choices. 

In Chapter 11, we present the most general framework for characterizing the 
face identity in a single image or a group of images with each image containing 
a transformed version of the object. In terms of the transformation, the group 
is made of either still images or frames of a video sequence. The face identity 
signature is either discrete- or continuous-valued. This framework referred 
as probabilistic identity characterization integrates all the evidence of the set 
and handles the localization problem, illumination and pose variations through 
subspace identity encoding. Issues and challenges arising in this framework 
are addressed and efficient computational schemes are given. All instances of 
face recognition algorithms are be interpreted in the most general framework 
[131]. 



Chapter 2 

PRELIMINARIES AND REVIEWS 

In this chapter, we first present some mathematical preliminaries on various 
topics needed for the development of the book, beginning with a glossary of 
notations. We then review related literature on (i) face recognition under il­
lumination and/or pose variations and (ii) face recognition from multiple still 
images or video sequences (including visual tracking). 

2.1 Preliminaries 
We begin by introducing some notations commonly used throughout the 

book and then present basic introductions to several relevant research topics, 
including Lambertian illumination model, subspace analysis, kernel method, 
regression, state space time series, and particle filter. 

2.1.1 Notation 
We denote a scalar by a, a vector by a, and a matrix with p rows and q 

columns by Apxq, and a block matrix by A. The matrix transpose is donate by 

A , the pseudo-inverse by A^ The matrix L^-norm is denoted by 11. | |r. 
The following special notations are introduced for brevity, convenience, and 

emphasis of special structure. 

• Concatenation notations: => and Jj.. 
=4> and -II mean horizontal and vertical concatenations, respectively. For 
example, we can represent an n x 1 vector a„xi and its transpose by 

a = [ai,a2,...,a„] = [JJ.-Li aj], a = [ai,a2, •-, fln] = [^"=1 a*]-

Similarly, we can represent a matrix Apxq by 

A= [ai,a2,...,aq] = [=>f^i â ] 
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where each â  is a p x 1 vector. 

We can use => and -IJ- to concatenate matrices to form a block matrix A. For 
instance, given a collection of matrices {Ai, A2,. . . , A„ } of size p x q,we 
construct a block matrix of size p x nqas 

Apxnq = [=^i=l A„J. 

Given a collection of matrices {An, A12,..., Ai„, . . . , kmn} of size p x q, 
we construct a block matrix of size pm x qn as 

and a block matrix of size p x qmn 

Apxqmn = [ ^ j = l r^j=l ^ij\ J-

JCronecker (tensor) product: (g). 
It is defined as 

Apxq ® Bj^xn = lv i= l l ^ j = l (^ij^l jpmxqn-

Note that the two matrices can be of different sizes. 

Hadamard (element-wise) product: o. 
It is defined as 

Arnxn ° "TOxra = [•l)-i=l l^j=l C'ijbijl \mxn-

Note that the two matrices must be of identical size. 

Vectorization operator: vec{.). 
It converts ap x q matrix to a pq" x 1 vector by arranging all the elements 
of the matrix according to a fixed order, say a lexicographic order. In other 
words, 

vec{A)pgxi = [J|̂ =i [-D-ĵ i aij] ]. 

Gram matrix. The dot product matrix (or Gram matrix) of two matrices 
Apx9 = [^i=i ^] and Bpxq = [=^j=i bj] is given as 

ApxqBpxq = [-l)-j=i [=^j=i aj bj] ]. 

Identity matrix ! „ of size m x m. 

Diagonal matrix D[(ii, (i2, • • •, dm\ of size mx m whose diagonal elements 
are {di,d2,---.c^m}. 

Normal distribution N(x; /z, S) with mean /j, and covariance matrix E. 
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2.1.2 Lambertian illumination model 
Many illumination models have been proposed in the literature. In the face 

recognition community, a Lambertian imaging model with a varying albedo 
field is mostly used. In the Lambertian illumination model, an image pixel h is 
represented as 

ft. = max(pn s , 0 ) = m a x ( t s,0), (2.1) 

where p is the albedo at the pixel, n = [a, &, c] is the unit surface normal vector 
at the pixel, tsxi = pn. is the product of albedo and surface normal, and s (a 
3 x 1 unit vector multiplied by its intensity) specifies a distant illuminant. If 
the pixel is not directly facing the light source, it satisfies t ' s < 0 or /i = 0. 
This is called an attached shadow. Another kind of shadow is cast shadow. 
Cast shadow is generated at a certain pixel when the light source is blocked by 
other pixels. This is related to the geometry of the object. Figure 2.1 gives an 
illustration of the Lambertian illumination model. 

rt=[ci,b,(^ 

Diffuse 
surface 

Figure 2.1. Illustration of Lambertian illumination model. 

An image h is a collection of d pixels {hi,i = 1,..., d}. By stacking all the 
pixels into a column vector, we have 

hdxi = [ d ^ * ] = [ d r a a x ( t 7 s , 0 ) ] (2.2) 

= max(Tdx3 S3xi,0), 

where the T matrix encodes the 'product' of the albedo and the surface normal 
for all pixels. We call the T matrix as the object-specific albedo-shape matrix. 

Another useful parameterization of the Lambertian model uses surface shape 
gradients. Suppose thatp(a. y), ĝ .̂ y) are the shape gradients, i.e., partial deriva­
tives of the depth map z^^^yy 

, ,n^ l+pPs+ qQs , „ - . 
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where 9 is the angle between the outward normal to the surface n = {p, q, 1) 
and the negative illumination vector -L ~ {Ps,Qs, 1) which represents the 
direction opposite to the distant light source. 

2.1.3 Subspace analysis 
Subspace analysis is often used in pattern recognition, signal processing 

and computer vision problems as an efficient method for both dimensionality 
reduction and finding the direction of the projection with certain properties. 
For example, in the context of face recognition [29], one attempts to find some 
basis vectors in that space serving as directions of projection, and hopefiiUy the 
projected data are clustered according to their class labels. 

The basic framework of subspace analysis is as follows. Suppose we have 
a d-dimensional random vector x where d is very large, we attempt to find m 
basis vectors (m < d) forming a projection matrix Udxm, such that the new 
representation z defined below satisfies certain properties. 

Zmxl = ^dxm^dxl-

Different properties give rise to different kinds of analysis methods. Two 
popular methods are principal component analysis (PCA), linear discriminant 
analysis (LDA) and independent component analysis (ICA). 

• PCA [12], an unsupervised method, decomposes the available data into 
uncorrelated directions, along which there exist the maximum variations. 
In other words, it tries to minimize the reconstruction error ||UU' — X||2, 
where X = [=>^=i x„] encodes the training data set. 

U - argmin||Uu'^ - X|]2. 

To this end, a total scatter matrix E = XX is defined and the optimal matrix 
U is formed by the eigenvectors corresponding to the m largest eigenvalues 
ofS. 

• LDA [7], a supervised method, exploits the class label information and 
attempts to maximize the between-class scatter while minimizing the within-
class scatter. In LDA [7], two scatter matrices are defined: between-class 
scatter matrix E^ and within-class scatter matrix T,w [7]. The following 
cost function ,7(U) is maximized. 

U"''EBU||2 
U = are max —=r 

U lluT SH/U|! 
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• IC A [43,243 ], an unsupervised method, finds tlie proj ection directions along 
which the data are statistically independent. Often, a contrast fiinction that 
measures the independence is minimized. 

2.1.4 Kernel method 
PCA and LDA are linear methods that utilize first- and second-order statis­

tics. Therefore, their effectiveness is diminished when confronted with highly 
nonlinear data structures. To enhance their modeling capability, kernel PCA 
(KPCA) [272] and kernel LDA (KLDA) [263, 268] have been proposed in 
the literature. These kernel methods enhance the modeling capability by non-
linearly mapping the data from the original space to a very high dimensional 
feature space, the so-called RKHS. The nonlinear mapping enables implicit 
characterization of higher-order statistics. The key idea of kernel methods is 
to avoid the explicit knowledge of the mapping function by evaluating the dot 
product in the feature space using a kernel fiinction. 

In the core of kernel methods lies a kernel function. Let £̂  be a set. A two 
variable fiinction k{a, fi)on£y.S\sa reproducing kernel if for any finite point 
set {ai, a2, ••-,««} and for any corresponding real numbers {ci, C2,..., c„}, the 
following condition holds: 

n n 

Y^YlciCjk{ai,aj) > 0. 
i = i i = i 

The most widely used kernel functions in the literature [18, 19, 21] are defined 
on a vector space, that is £" = TZ^. For example, two popular kernel functions 
based on vector inputs are the radial basis function (RBF) and the polynomial 
kernels. Their definitions are as follows [18, 19, 21]. Vx, y e TU*, 

fc(x,y) = e x p { - r i | | x - y||2}, fc(x,y) = {x^y + 9}'^. 

The kernel fiinction k can be interpreted as a dot product between two vectors 
in a very high-dimensional space, i.e., the RKHS Hk- In other words, there 
exists a nonlinear mapping function cp : W -^ Hk = Ti-^, where f > p and / 
could even be infinite, such that 

fc(x,y) = 0(x)T<^(y). 

This is the so-called 'kernel trick', which is also illustrated in Figure 2.2. 
Given a set of training data {ai,a2,...,««}, the Gram matrix characterizes 

complete information for the kernel method. The Gram matrix K = [k{ai, Uj)] 
is an n X n matrix whose if* element equals to k{ai, aj). 
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f 

Figure 2.2. Illustration of 'kernel trick': The nonlinear decision boundary in the original space 
£ becomes linear in the RKHS Hk-

2.1.5 Regression 
Regression finds the solution to the following minimizing problem: 

r(x) = argmin£:p(x,y){I '(y(x),g(x))}, (2.4) 

where Q is the set of allowed output functions, £p{x,y) takes the expectation 
under the distribution p(x, y), and the L{o^ o) function is the loss function that 
penalizes the deviation of the regressor output g(x) from the true output y(x). 
We assume that xeVJ^ and y(x) G TZ'i. 

In practice, it is impossible to compute the expectation since the distribu­
tion j3(x,y) is unknown. Given a set of training examples {(x„,y(x„)); n = 
1,2,... ,N}, the cost function £^p(x,y)-^(y(x),g(x)) is approximated as the 

training error J(g) = A/-^ Yln=i HYM, g(x„)). 
If the number of samples N is infinitely large, the above approximation 

is exact by the law of the large number. Unfortunately, a practical value of 
A'̂  is never large enough, especially when dealing with image data and high-
dimensional output parameter A more severe problem is overfitting: given 
a limited number of training examples, the function g(x) can be easily and 
arbitrarily constructed to yield a zero training error Therefore, additional 
regularization constraints are used. The combined cost function is given as 
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(ignoring the scaling factor A'̂ "̂ ) 

N 

,/(g) = ^L(y (x„ ) ,g (x„ ) ) + Ai?(g), 
n=l 

where A > 0 is the regularization coefficient that controls the degree of reg-
ularization and i?(g) is the regularization term. Regularization often imposes 
certain smoothness on the output function or reflects the belief of some prior 
knowledge of the output. 

Popular regression algorithms are data-driven in the sense that the output 
function are directly related to the training data inputs. Examples of data-driven 
regressors include nonparameteric kernel regression (NPR), linear methods and 
their nonlinear kernel variants such as kernel ridge regression (KRR), support 
vector regression (SVR), etc. 

Nonparametric kernel regression (NPR) 
Nonparametric kernel regression (NPR) [9] is a smoothed version of k-

nearest-neighbor (fcNN) regression. The fcNN regressor approximates the con­
ditional mean, an optimal estimate in the L^ sense. NPR takes the following 
form: 

, . ^ En=ife<T(x;xn)y(xn) 

where ha{o] x„) is a kernel function. The most widely used kernel fiinction is 
the RBF kernel 

/ICT(X;X„) = exp{ ^^^ ). 

The RBF kernel has a noncompact support. Other kernel functions with compact 
supports such as the Epanechnikov kernel can be used too. 

In general, when confronted with the scenario of image based regression, 
NPR, albeit smooth, tends to overfit the data and to yield a low bias and a high 
variance. 

Kernel ridge regression (KRR) 

Kernel ridge regression (KRR) [9] assumes that the multiple-output regres­
sion function takes a linear form: 

N 

n=\ 

where fc(x; x„) is a reproducing kernel function and Q;„, is a </ x 1 vector that 
weights the kernel function. The solution to the multiple-output KRR is 

; ( X ) = Y ( K + AI)-1K{X), 
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where Yqxjv = [=^iLi li^i)] is the training output matrix, K v̂xiv = [fc(xi;xj)] 
is the Gram matrix for the training data, and 

K(X)JVX1 = [^n=\ fc(x;x„)]. 

In general, when a Hnear kernel is used, KRR tends to underfit the data and 
yields a high bias and a low variance. Using the nonlinear kernel function 
often gives enhanced performance. One computational difficulty of KRR lies 
in inverting the A'' x iV matrix K + Al. 

Support vector regression (SVR) 
Support vector regression (SVR) [21] is a robust regression method. Its 

current formulation works for single output data, i.e. g = 1. SVR minimizes 
the following cost function 

1 ^ 
"wj|̂  + C ^ l y ( x „ ) - 5 ( x „ ) | e 

n=l 
2 

^N where | o |g is an e-insensitive function, ^(x) = 5Zn=i Wnk{x; x„) with /c(x; x„) 
being a reproducing kernel function and w„ its weight, and w = [-D-̂ j w„]. Be­
cause some of the coefficients Wn, which can be found through a quadratic pro­
gramming procedure, are zero-valued, the samples x„ associated with nonzero 
weights are called support vectors. 

SVR strikes a good balance between bias and variance tradeoff and hence 
is very robust. Unfortunately, directly applying SVR to the multiple-output 
regression problem is difficult. 

2.1.6 State space time series model and particle filter 
State space time series models [17] are widely employed to represent video 

data. Two important components of state space modeling are state transition 
and observation models whose most general forms can be defined as follows: 

State transition model: 9t = it{Ot~i,vif), (2.5) 

Observation model: y^ = gf.{9t,Vf), (2.6) 

where uj is the system noise, f t(., •) characterizes the kinematics, vt is the 
observation noise, and g((., •) models the observer. 

The key quantity that characterizes the time series is the posterior distribution 
p{6i-s lyi-t). Depending on the relation between s and t, we solve three different 
problems: filtering if s = t,prediction if s > t, and smoothing if s < t. In face 
tracking and recognition problems, we mostly consider the filtering problem 
and how to solve it. 



Preliminaries and Reviews 25 

General particle filter algorithm 

Given the state transition model in (2.5) characterized by the state transition 
probability p{9t\0t-\) and the observation model in (2.6) characterized by the 
likelihood fiinctionp(yJ0(), the problem, is reduced to computing the posterior 
probability p{Ot\Yi.t)- The nonlinearity and non-Normality in (2.5) and (2.6) 
make the standard Kalman filter [1] ineffective. The particle filter is a means of 
approximating the posterior distribution p(^t j y j . j) by a set of weighted particles 

St = {6ip\ w P } / ^ ! with X;/=i w P = 1. It can be shown [248] that St is 
properly weighted with respect to p{6t\Yi.t) i^ ̂ ^̂  sense that, for every bounded 
function h(.), 

J 

lim Y.4'^H0i'^)=MH0t)]. (2.7) 
.? = ! 

Given St-i = { t̂_\, wjij }j^i which is properly weighted with respect to 

p{Ot-\ Iji-t-i), we first resample St-i to reach a new set of samples with equal 

weights {0t-i, l}/=i- We then draw samples {û  }^^^ for u; and propagate 

0f):!.{to0t'-"hy(2.5). The new weight is updated as 

wt(xp{yt\et) (2.8) 

The complete algorithm is summarized in Figure 2.3. This algorithm was 
first introduced to the vision community by Isard and Blake [183] (called the 
CONDENSATION algorithm) to deal with a contour tracking problem. 

InitiaMze a sample set So = {^o , l ) } / = i according to prior distribution p{do). 
Fort = 1,2,... 

Forj = 1,2,..., J 

Resample iS(-i = { 6 } „ p " J ( „ i } to obtain a new sample {81_'^,\). 

Predict the sample by drawing u)^ ̂  far ut and computing B^ = f t ( S , _ J , u , ). 

Compute the transformed image z"'' = T{yi; 9t}. 

yjipAaii the weight using wi'^ = p ( y f | S p ' ) = p(zS/'lSp*)-
End 
Normalize the weight using w^' = '«( / 5 ^ „ , "'( • 

End 

Figure 2.3. The general particle filter algorithm. 

Often in time series, we are interested in deriving the best estimate 9t given 
the observations up to now. For example, the state estimate 0t can either be the 
minimum mean square error (MMSE) estimate, 

Ot = Or-'^' = E[9t\y,.,t] ^ J-' E ^^t^i'\ (2-9) 
. 7 = 1 
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where E the expectation operator, the maximum a posteriori (MAP) estimate, 

4 = er" = argmaxp{^t|yiJ « a r g m a x 4 ' \ (2.10) 

or other forms based onp{6t\yi.i). 

Variations of particle filter 
Sequential Importance Sampling (SIS) [237, 248] draws particles from a 

proposal distribution q{9t\0t-i, y^.j) and then for each particle a proper weight 
is assigned as follows: 

wt^piyt\0t)piet\et-i)/q{et\et-uy,.j). (2.11) 

Selection of the proposal distribution q{6t\9t~i,yi.i.) is usually dependent on 
the application. We here focus on the extentions used in the vision literature. 
In the ICoNDENSATiON algorithm [184] which fiises low-level and high-level 
visual cues in the conventional CONDENSATION algorithm [183], the proposal 
distribution, a fixed Gaussian distribution for low-level color cue, is used to 
predict the particle configurations, then the posterior distribution of the high-
level shape cue is approximated using SIS. It is interesting to note that two 
different cues can be combined together into one state vector to yield a robust 
tracker, using the co-inference algorithm [198] and the approach proposed in 
[196]. In the chapter on visual tracking, we also use a prediction scheme but 
our prediction is based on the same visual cue i.e. the appearance in the image, 
and it is directly used in the state transition model rather than used as a proposal 
distribution. 

2.2 Reviews 
In this section, we review two important topics in unconstrained face recog­

nition: (i) face recognition under illumination, pose, and/or aging variations and 
(ii) face recognition from multiple still images or video sequences (including 
visual tracking). 

2.2.1 Face recognition under illumination, pose and/or 
aging variations 

We first characterize the three factors of illumination, pose, and identity in 
the context of face recognition under illumination and pose variations. We 
then address approaches on face recognition under illumination and/or pose 
variances. We also give a brief review of facial aging. 

Identity, illumination, and pose 
Three factors are involved in face recognition under pose and illumination 

variations, namely illumination, pose, and identity. Using the human face 
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images as examples, we now address issues involved in each of the three factors 
by fixing the other two. 

• Illumination. Various illumination models are available in the literature, 
ranging from models for highly specular objects such as mirrors to models 
for matte objects. Mostly objects belong to the latter category and are de­
scribed by Lambertian reflectance models for their simplicity. Early shape 
from shading approaches [10] assumed a constant albedo field. However, 
this assumption is violated at locations such as eyes and mouth edges. For the 
human face, the Lambertian reflectance model with a varying albedo field 
provides a reasonable approximation [75, 84, 144, 168, 95]. The Phong 
illumination model also has application [72]. Later, we adopt the Lamber­
tian reflectance model with a varying albedo field to model the effect of 
illumination. 

• Pose. The issue of pose essentially amounts to a correspondence problem. 
If dense correspondences across poses are available and if a Lambertian 
reflectance model is further assumed, a rank-1 constraint is implied because 
theoretically, a 3D model can be recovered and used to render novel poses. 
However, recovering a 3D model from 2D images is a difficult task. There 
are two types of approaches for recovering 3D models from 2D images: 
model-based and image-based. Model-based approaches [72, 215, 224, 
226] require explicit knowledge of prior 3D models, while image-based 
approaches [ 190,194,218,219,221 ] do not use prior 3D models. In general, 
model-based approaches [72, 215, 224, 226] register the 2D face image to 
3D models that are given beforehand. In [215, 226], a generative face 
model is deformed through bundle adjustment to fit 2D images. In [224], a 
generative face model is used to regularize the 3D model recovered using the 
Structure from motion (SfM) algorithm. In [72], 3D morphable models are 
constructed based on many prior 3D models. There are mainly three types 
of image-based approaches: SflVI [190, 194], visual hull [218, 221], and 
light field rendering [219, 216] methods. The SfM approach [190] works 
with sparse correspondence and does not reliably recover the 3D model 
amenable for practical use. The visual hull methods [218, 221] assume 
that the shape of the object is convex, which is not always satisfied by the 
human face, and also require accurate calibration information. The light 
field rendering methods [219,216] relax the requirement of calibration by a 
fine quantization of the pose space and recover a novel view by sampling the 
captured data that form the so-called light field. Later in 5, we propose an 
image-based method with no prior 3D models used. It handles a given set 
of views through an analysis analogous to the light field concept. However, 
no novel poses are rendered. 
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• Identity. One straightforward method to describe the identity is through dis­
crete class labels. However, using this discrete description it is impossible 
to establish a link between objects used in the training and testing stages 
in terms of the identity. An alternative way is to associate the labels with 
continuous-valued features, which are regarded as an identity signatures. 
One good example is to use subspace encoding [50,64], where linear gener­
alization is assumed to incorporate the fact that all human faces are similar. 
Once the subspace basis are learned from the training set, they are used to 
characterize the gallery/probe set, thus enabling the required generalization 
capability. 

Face recognition under illumination variation 

Face recognition under illumination variation is a very challenging problem. 
The key is to successfully separate the illumination source from the observed ap­
pearance. Once separated, what remains is illuminant-invariant and appropriate 
for recognition. In addition to illumination variation, various issues embedded 
in the recognition setting make recognition even more difficult. We follow the 
FERET recognition protocol introduced in [60]. Assuming the availability of 
the following three sets, namely one training set, one gallery set, and one probe 
set, the recognition algorithm learns from the training set the characteristic 
features, associates descriptive features with the objects in the gallery set, and 
determines the identity for the objects in the probe set. Different recognition 
settings can be formed in terms of identity and illumination overlaps among the 
training, gallery, and probe sets. The most difficult setting, which is the focus 
of Chapter 4, is obviously the one in which there is no overlap at all among the 
three sets in terms of both identity and illumination, except the identity overlap 
between the gallery and probe sets. In this setting, generalizations from known 
illumination to unknown illumination and from known identities to unknown 
identities are particularly desired. 

Existing approaches can be grouped into three streams: subspace methods, 
reflectance-model methods, and 3D-model-based methods, (i) The first ap­
proach is very popular for the recognition problem. After removing the first 
three eigenvectors, PCA was reported to be more robust to illumination varia­
tion than the ordinary PCA or the 'Eigenface' approach [64]. The 'Fisherface' 
approach [44, 77] used LDA to handle illumination variations. In general, 
subspace learning methods are able to capture the generic face space and thus 
recognize new objects not present in the training set. The disadvantage is that 
subspace learning is actually tuned to the lighting conditions of the training 
set; therefore if the illumination conditions are not similar among the training, 
gallery, and probe sets, recognition performance may not be acceptable, (ii) The 
second approach [144, 75, 161, 84, 90, 93] employs a Lambertian reflectance 
model with a varying albedo field, mostly ignoring both attached and cast shad-
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ows. The main disadvantage of this approach is the lack of generahzation from 
known objects to unknown objects, with the exception of [84, 90], In [84], 
Shashua and Raviv used an ideal-class assumption. All objects belonging to 
the ideal class are assumed to have the same shape. The work of Zhang and 
Samaras [90] utilized the regularity of the harmonic image exemplars to per­
form face recognition under varying light, (iii) The third approach employs 3D 
models. The 'Eigenhead' approach [71] assumes that the 3D geometry (or 3D 
depth information) of any face lies in a linear space spanned by the 3D geom­
etry of the training ensemble and uses a constant albedo field. The morphable 
model approach [72] is based on a synthesis-and-analysis strategy. It is able 
to handle both illumination and pose variations with illumination directions 
specified. The weakness of the' 3D model approaches is that they require 3D 
models and complicated fitting algorithms. 

Face recognition under pose variation 

As mentioned earlier, pose variation essentially amounts to a correspondence 
problem. Unfortunately, finding correspondences is a very difficult task and, 
therefore there exists no subspace based on an appearance representation when 
confronted with pose variation. Approaches to face recognition under pose vari­
ation [75,76,81 ] avoid the correspondence problem by sampling the continuous 
pose space into a set of poses, v.i.z. storing multiple images at different poses 
for each person at least in the training set. In [81], view-based 'Eigenfaces' 
are learned from the training set and used for recognition. In [75], a denser 
sampling is used to cover the pose space. However, as [75] uses object-specific 
images, appearances belonging to a novel object (i.e. not in the training set) 
cannot be handled. In [76], the concept of light field [219] is used to character­
ize the continuous pose space. ' Eigen' light fields are learnt from the training 
set. However, the implementation of [76] still discretizes the pose space and 
recognition can be based on probe images at poses in the discretized set. One 
should note that the light field is not related to variation in illumination. 

Face recognition under illumination and pose variations 

Approaches to handling both illumination and pose variations include [72, 
77, 88, 89, 94]. The approach [72] uses 3D morphable models to characterize 
the human faces. Both geometry and texture are linearly spanned by those of the 
training ensemble consisting of 3D prior models. It is able to handle both illumi­
nation and pose variations. Its only weakness is a complicated fitting algorithm. 
Recently, a fitting algorithm more efficient than suggested in [72] is proposed 
in [83]. In [77], the Fisher light field is proposed to handle both illumination 
and pose variations, where the light field is used to cover the pose variation 
and the LDA to cover the illumination variation. Since discriminant analysis 
is just a statistical analysis tool which minimizes the within-class scatter while 
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maximizing the between-class scatter and has no relationship with any physical 
illumination model, it is doubtable if discriminant analysis is able to generalize 
to new lighting conditions. Instead, this generalization may be inferior because 
discriminant analysis tends to overly tune to the lighting conditions in the train­
ing set. The 'Tensorface' approach [88,89] uses a multilinear analysis to handle 
various factors such as identity, illumination, pose, and expression. The factors 
of identity and illumination are suitable for linear analysis, as evidenced by the 
'Eigenface' approach (assuming a fixed illumination and a fixed pose) and the 
subspace induced by the Lambertian model, respectively. However, the factor 
of expression is arguably amenable for linear analysis and the factor of pose is 
not amenable for linear analysis. In [94], preliminary results are reported by 
first warping the albedo and surface normal fields at the desired pose and then 
performing recognition as usual. 

Facial aging 

While studying the role played by these external factors in affecting face 
recognition is crucial, it is important to study the role played by natural phe­
nomenon such as facial aging. Aging effects on human faces manifest in differ­
ent forms in different ages. While aging effects are manifested more in terms 
of changes in the cranium's shape during one's younger years, they are man­
ifested more in terms of wrinkles and other skin artifacts during one's older 
years. Here, we provide a brief overview of the literature on facial aging. 

Pittenger and Shaw [140] characterized the growth of human faces as a 
viscal-elastic event and proposed shear & strain transformations to model the 
changes in the shape of face profiles due to growth. They studied the effects 
of shear and strain transformations on the perceived age. O'Toole et al. [139] 
applied a standard facial caricaturing algorithm to three dimensional models 
of faces and reported an increase in the perceived age of faces when facial 
creases were exaggerated into wrinkles and a decrease when such creases were 
de-emphasized. 

Lanitis et al. [136] proposed a method for simulating aging effects on face 
images. On a database of age progressive images of individuals each under 30 
years of age, they used a combined shape-intensity model to represent faces. 
They modeled age as a quadratic function of the PCA coefficients extracted 
from the model parameters. They reported results on experiments such as 
estimating the age of an individual from his/her face image; simulating aging 
effects on face images etc. In [137], Lanitis et al. used a similar framework as 
defined in [136] on a similar data set and evaluated the performance of three 
age classifiers: the first was a quadratic function of the model parameters; the 
second was based on the distribution of model parameters; and the third was 
based on supervised and unsupervised neural networks trained on the model 
parameters. 
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Tiddeman et al. [141] developed a model for aging face images by trans­
forming facial textures. Face images were represented in terms of 2D shape 
vectors and pixel intensities. They developed prototype faces by averaging the 
2D shape vectors and pixel intensities across a set of face images under each 
age group. To age a face image, they superimposed the difference in 2D shape 
vectors and pixel intensities of the prototype faces on to the face image. Further, 
they simulated wrinkles in face images by employing locally weighted wavelet 
functions at different scales and orientations and thereby enhanced the edge 
amplitudes. Their experimental evaluation reported significant increase in the 
perceived age of subjects. Wu et.al. [142] came up with a dynamic model 
to simulate wrinkles in 3D facial animation and skin aging. They represented 
skin deformations as plastic-visco-elastic processes and generated permanent 
wrinkles through a simulation of inelastic skin deformations. Givens et.al. 
[135] analyzed the role of various co-variates such as age, gender, expression, 
facial hair etc in affecting recognition and noted that older faces were easily 
recognized by three face recognition algorithms. 

2.2.2 Face recognition from multiple stills or videos 
In this section, we review related literature on face recognition from multiple 

still images, or from video sequences. Since visual tracking is an integrated 
part in video-based recognition, we also briefly review the literature on tracking 
in the end. 

Three properties 

It is obvious that multiple still images or a video sequence can be regarded 
as a single still image in a degenerate manner [103, 107, 117, 119, 120]. More 
specifically, suppose that we have a single-still-image-based FR algorithm A (or 
the base algorithm) by some means, we can construct a recognition algorithm 
based on multiple still images or a video sequence by combining multiple base 
algorithms denoted by A ' s . Each Ai takes a different single image as input, 
coming from the multiple still images or video sequences. The combination 
rule can be ad hoc chosen to be additive, multiplicative, and so on. 

However, the fused algorithms completely neglect additional properties pos­
sessed by multiple still images or video sequences, which are not present in a 
still image. In particular, three properties manifest themselves, which motivated 
various approaches recently proposed in the literature. 

1 [PI: Set of observations]. This property is directly utilized by the fused 
algorithms. One main disadvantage may be the ad hoc nation of the com­
bination rule. However, theoretical analysis based on a set of observations 
can be principally derived. For example, a set of observations can be sum-
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marized using quantities like matrix, probability density function, manifold, 
etc. Hence, corresponding knowledge can be utilized to match two sets. 

2 |P2: Temporal continuity/Dynamics]. Successive frames in the video se­
quences are continuous in the temporal dimension. Such continuity, coming 
from facial expression, geometric continuity related to head and/or camera 
movement, or photometric continuity related to changes in illumination, 
provides an additional constraint for modeling face appearance. In par­
ticular, temporal continuity can be fiirther characterized using kinematics. 
For example, facial expression and head movement when an individual par­
ticipates certain activity result in structured changes in face appearance. 
Modeling of such a structured change (or dynamics) further regularizes FR. 

3 |P3 : 3D model]. This means that we are able to reconstruct a 3D model 
from a group of still images and a video sequence. Recognition can then be 
based on the 3D model. Using the 3D model provides possible invariance 
to pose and illumination. 

Clearly, the first and third properties are shared by multiple still images and 
video sequences. The second property is solely possessed by video sequences. 

Below, we review various face recognition approaches utilizing these prop­
erties in one or more ways. Generally speaking, the newly designed algorithms 
are better in terms of recognition performance, computational efficiency, etc. 

PI: Approaches utilizing set of observations 

Four rules of summarizing a set of observations have been presented. In gen­
eral, different data representations are utilized to describe multiple observations 
and corresponding distance fianctions based on the presentations are invoked 
for recognition. 

One image or several images 
Algorithms designed by representing a set of observations into one image 

or several images and then applying the combination rules are essentially still-
image-based and hence are not reviewed here. 

Matrix 
Yamaguchi el al. [121] proposed the so-called Mutual Subspace Method 

(MSM) method. In this method, the matrix representation is used and the 
similarity function between two matrices is defined as the angle between two 
subspaces of the matrices (also referred to as principal angle or canonical corre­
lation coefficient). Suppose that the columns of X and Y represent two subspaces 
Ux and Uy, the principle angle 9 between the two subspaces is defined as 

T u V 
cos(^) = max max —^==—-===. (2.12) 
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It can be shown that the principle angle 9 is equal to the largest singular value of 
the matrix UiUy where Ux and Uy are orthogonal matrices encoding the column 
bases of the X and Y matrices, respectively. 

In general, the leading singular values of the matrices Uĵ Uy defines a series 
of principal angles {^fcj's. 

T u V 
cos(^fc) = max max _== (2.13) 

ueU^veUy 

subject to: 
n'^Ui =0,v'^Vi = 0, i = l , 2 , . . . , / c - l . (2.14) 

Yamaguchi el al. [121] recorded a database of 101 individuals posing vari­
ation in facial expression and pose. They discovered that the MSM method 
is more robust to noisy input image or face normalization error than the still-
image-based method that is referred to as conventional subspace method (CSM) 
in [121]. The similarity function of the MSM method is more stable and con­
sistent than that of the CSM method. 

Wolf and Shashua [275] extended the computation of the principal angles 
into the RKHS. Kernel principal angles between two matrices X and Y are then 
based on their 'kemelized' versions 0(X) and 0(Y). A 'kemelized' matrix (f){X) 
of X = [xi,x2,... ,x„] is defined as 0(X) = [(?!)(xi),0(x2),... ,0(x„)]. The 
key is to evaluate the matrix Û ĵ̂ Û̂ ŷ) defined in RKHS. In [275], Wolf and 
Shashua showed the computation using the 'kernel trick'. 

Another contribution of Wolf and Shashua [275] is that they further proposed 
a positive kernel function taking matrix as input. Given such a kernel function, 
it can be readily plugged into a classification scheme such as a support vector 
machine (SVM) [18]. Face recognition using multiple still images, coming 
from a tracked sequence, were studied and the proposed kernel principal angels 
slightly outperforms other non-kernel versions. 

Zhou [278] systematically investigated the kernel functions taking matrix as 
input (also referred to as matrix kernels). More specifically, the following two 
functions are kernel fiinctions. 

A;.(X,Y) = tr{X^Y), h{X,Y) = dei(x'^Y), (2.15) 

where tr and det are matrix trace and determinant. They are called as matrix 
trace and determinant kernels. Using them as building blocks, Zhou [278] 
constructed more kernels based on the column basis matrix, the 'kemelized' 
matrix, and the column basis matrix of the 'kemelized' matrix. 

%.(X, Y) = tr(u|Uy), fcu^(X, Y) = dei(U^Uy), (2.16) 

fc^.(X,Y) = tr((/)(X)T</,(Y)), fc^,(X,Y) = det{4>{xf^{Y)), (2.17) 
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%0.(X, Y) = tr-(uT x)U^(Y)): %0*{X, Y) = dei(uT x)U^(Y))- (2-18) 

Probability density function (PDF) 
Shakhnarovich etal. [118] used multivariate normal density for summarizing 

face appearances and the Kullback-Leibler (KL) divergence or relative entropy 
for recognition. The KL divergence between two Gaussian densities pi = 
N(/ii, El) and/'2 = N(/U2,5̂ 2) can be explicitly computed as 

KL{j>^\p^) = f p,{^)\ogPl^dx (2.19) 
Jx P2W 

= bog&) + ii^l ~ f^2V^2\i^i - i^2) 

+ i i r ( E i S 2 1) - \ , 

where d is the dimensionality of the data. One disadvantage of the KL diver­
gence is that it is asymmetric. To make it symmetric, they used KL{p^ 1IP2) + 
KL(p2 \\pi)- Shakhnoarovich et al. [118] achieved better performance than the 
MSM approach by Yamaguchi el al. [121] on a dataset including 29 subjects. 

Other than the KL divergence, probabilistic distance measures such as Cher-
nofif distance and Bhattacharyya distance can also be used. The Chemoff dis­
tance is defined and computed in the case of normal density as: 

Jc(Pi,P2) = - l o g { / K ^ ( x K H x ) d x } (2.20) 

J- T 1 

= 2 " I " 2 { M I - M 2 ) [aiT.1 + a2T.2]~ {pi - H2) 

, 1 | a iS i +a2S2 | 
log-

2 ° |Ei|«i|I]2|«2 

where a i > 0, a2 > 0 and a i + 02 = 1. When ai— a2 — 1/2, the Chernoff 
distance reduces to the Bhattacharyya distance. 

In [265], Jebara and Kondon proposed probability product kernel fiinction 

k(Pi.P2) = Ip\{^)pl{x)dx, r > 0. (2.21) 
•Jx 

When r = 1/2, the kernel function k reduces to the so-called Bhattacharyya 
kernel since it is related to the Bhattacharyya distance. When r = 1, the kernel 
function k reduces to the so-called expected likelihood kernel. In practice, we 
can simply use the kernel function fc as a similarity function. 

However, the Gaussian assumption can be ineffective when modeling the 
nonlinear face appearance manifold. In [277] (also Chapter 7), Zhou and Chel-
lappa modeled the nonlinearity through a different approach: kernel methods. 
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Since a nonlinear function is used, albeit in an implicit fashion, Zhou and Chel-
lappa [277] investigated their uses in a different space. To be specific, analytic 
expressions for probabilistic distances that account for nonlinearity or high-
order statistical characteristics of the data are derived. On a dataset involving 
subjects presenting appearances with pose and illumination variations, the prob­
abilistic distance measures performed better than their non-kernel counterparts. 

Recently, Arandjelovic and Cipolla [98] used resistor-average distance (RAD) 
for video-based recognition. 

RAD(p„p^) = (KLip.Wp^)-' + KL{p^\\p^)-')-\ (2.22) 

Further, computation of the RAD was conducted on the RKHS to absorb non-
linearity of face manifold. Some robust techniques such as synthesizing images 
to account for small localization errors and RANSAC algorithms to reject out­
liers were introduced to achieve improved performance. They [99] further 
extended their work to use the symmetric KL divergence distance between two 
mixture-of-Gaussian densities. 

Manifold 
Fitzgibbon and Zisserman [104] proposed to compute a joint manifold dis­

tance to cluster appearances. A manifold is captured by subspace analysis 
which is fully specified by a mean and a set of basis vectors. For example, a 
manifold V can be represented as 

P = {nip -F Bpu|u e U) (2.23) 

where mp is the mean and Bp encodes the basis vectors. In addition, the authors 
invoked affine transformation to overcome geometric deformation. The joint 
manifold distance between V and Q is defined as 

d{V,Q) = min |lT(mp + BpU,a)™T(nig + B,v,b)f + 
•u,v,a,b 

E{a)+E{b)+E{M) + E{v), (2.24) 

where T(x, a) transforms image x using the affine parameter a and £^(a) is the 
prior cost incurred by invoking the parameter a. 

In experiments, Fitzgibbon and Zisserman [104] performed automatic clus­
tering of faces in feature-length movies. To reduce the lighting effect, the face 
images are high-pass filtered before subject to a clustering step. The authors re­
ported that sequence-to-sequence matching presents a dramatic computational 
speedup when compared with pairwise image-to-image matching. 

Identity surface is a manifold, proposed by Li et al. in [ 114], that depicts face 
appearances presented in multiple poses. The pose is parameterized by yaw a 
and tilt 9. Face image at (a, 9) is first fitted to a 3D point distribution model 
and an active appearance model. After pose estimation, the face appearance is 
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warped to a canonical view to provide a pose-free representation from whicli a 
nonlinear discriminatory feature vector is extracted. Suppose that the feature 
vector is denoted by f, the function f (a, 6) defines the identity surface that is 
pose-parameterized. In practice, since only a discrete set of views are available, 
the identity surface is approximated by piece-wise planes. The manifold dis­
tance between two manifolds V = {f^(Q:, 9)} and Q = {fq{a, 9)) is defined 
as 

d{Q,'P)= [ f w{a,9)d{fq{a,9),fp{a,e))dad9. (2.25) 

where w{a, 9) is a weight function. 
A video sequence corresponds to a trajectory traced out in the identity sur­

face. Suppose that video frames sample the pose space at [aj ,0j}, the following 
distance Ylj Wjd{fq{aj, 6j), fp{aj,9j)) is used for video-based FR. In the ex­
periments, 12 subjects were involved and a 100% recognition accuracy was 
achieved. 

P2: Approaches utilizing temporal continuity/dynamics 
Simultaneous tracking and recognition is an approach proposed by Zhou et 

al. [129] that systematically studied how to incorporate temporal continuity in 
video-based recognition. Zhou et al. modeled two tasks involved, namely track­
ing and recognition, in a probabilistic framework. A time series model is used, 
with the state vector (nt, 9t) where nt is the identity variable and 9t is the track­
ing parameter, and the observation ŷ  (i.e. the video frame). The time series 
model is fully specified by the state transition probability/)(nt, 9t\nt-i,9t-i) 
and the observational likelihood/j(yf|^t, nt). This is covered in detail in Chap­
ter 10. 

In the work of Zhou et al. [129], in addition to the case that the gallery 
consists of one still image per individual, they also extended the approach to 
handle video sequence in the gallery set. Representative exemplars are learned 
from the gallery video sequences to depict individuals. Then simultaneous 
tracking and recognition was invoked to handle video sequences in the probe 
set. Li and Chellappa [112] also proposed an approach somewhat similar to 
[129]. In [112], only tracking was implemented using SIS and recognition 
scores were subsequently derived based on tracking results. 

Lee et al. [109] performed video-based face recognition using probabilistic 
appearance manifolds. The main motivation is to model appearances under 
pose variation, i.e., a generic appearance manifold consists of several pose 
manifolds. Since each pose manifold is represented using a linear subspace, 
the overall appearance manifold is approximated by piecewise linear subspaces. 
The learning procedure is based on face exemplars extracted fi^om a video 
sequence. K-means clustering is first applied and then for each cluster principal 
component analysis is used for subspace characterization. 
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In addition, the transition probabilities between pose manifolds are also 
learned. The temporal continuity is directly captured by the transition probabil­
ities. In general, the transition probabilities between neighboring poses (such 
as frontal pose to left pose) are higher than those between far-apart poses (such 
as left pose to right pose). Recognition also reduces to computing posterior 
distribution. 

In experiments, Lee et al. compared three methods that use temporal in­
formation differently: the proposed method with learned transition matrix, the 
proposed method with uniform transition matrix (meaning that temporal conti­
nuity is lost), and majority voting. The proposed method with learned transition 
matrix achieved a significantly better performance than the other two methods. 
Recently, Lee and Kriegman [110] extended [109] by learning the appearance 
manifold from a testing video sequence in an online fashion. 

Liu and Chen [115] used adaptive hidden Markov model (HMM) to depict 
the dynamics. HMM is a statistical tool to model time series. Usually, the 
HMM is denoted by A = (A, B,7r), where A is the state transition probability 
matrix, B is the observation PDF, and TT is the initial state distribution. Given a 
probe video sequence Y, its identity is determined as 

n = arg ^max^ = PC^IK), (2.26) 

where/?(Y]A„) is the likelihood of observing the video sequence Y given the 
model A„. In addition, when certain contains hold, HMM A„ was adapted to 
accommodate the appearance changes in the probe video sequence that results 
in improved modeling over time. Experimental results on various datasets 
demonstrated the advantages of using the adaptive HMM. 

Aggarwal et al. [100] proposed a system identification approach for video-
based FR. The face sequence is treated as a first-order auto-regressive and 
moving averaging (ARMA) random process. 

et+i = kOt + Vi, Yt =- COt + Wi, (2.27) 

where v* ~ A/'(0, Q) and wj ~ 7V(0, R). System identification is equivalent to 
estimating the parameters A, C, Q, and R from the observations {y ̂ , 72, • • •, YT } • 
Once system is identified or each video sequence is associated with its parame­
ters, video-to-video recognition uses various distance metrics constructed based 
on the parameters. Promising experimental results (over 90%) were reported 
when significant pose and expression variations are present in the video se­
quences. 

Facial expression analysis is also related to temporal continuity/dynamics, 
but not directly related to FR. Examples of expression analysis include [45,62]. 
A review of face expression analysis is beyond the scope of this chapter. 
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P3: Approaches utilizing 3D model 

There is a large body of literature on SfM. However, the current SfM algo­
rithms do not reliably reconstruct the 3 D face model. There are three difficulties 
in the SfM algorithm. The first lies in the ill-posed nature of the perspective 
camera model that results in instability of the SfM solution. The second is that 
the face model is not a truly rigid model especially when facial expressions and 
other deformations are present. The final difficulty is related to the input to 
the SfM algorithm. This is usually a sparse set of feature points provided by a 
tracking algorithm that itself has many flaws. Interpolation from a sparse set 
of feature points to a dense set is very inaccurate. 

To relieve the first difficulty, orthographic and paraperspective models are 
used to approximate the perspective camera model. Under such approximate 
models, the ill-posed problem becomes well-posed. In Tomasi and Kanade 
[194], the orthographic model was used and a matrix factorization principle 
was discovered. The factorization principle was extended to the paraperspective 
camera model in Poelman and Kanade [223]. Factorization under uncertainty 
was considered in [175, 182]. 

The second difficulty is often resolved by imposing a subspace constraint on 
the face model. Bregler et al. [176] proposed to regularize the nonrigid face 
model by using the linear constrain. It was shown that factorization can be still 
be obtained. Brand [175] considered such factorization under uncertainty. Xiao 
et al. [228] discovered a closed form solution to nonrigid shape and motion 
recovery. 

Interpolation from a sparse set to a dense depth map is always a difficult 
task. To overcome this, a dense face model is used instead of interpolation. 
However, the dense face model is only a generic model and hence may not be 
appropriate for a specific individual. Bundle adjustment [215,226] is a method 
that adjust the generic model directly to accommodate the video observation. 
Roy-Chowdhury and Chellappa [224] took a different approach for combining 
the 3D face model recovered from the SfM algorithm with the generic face 
model. Jebara and Pentland [108] regularized the SfM using a parameterized 
face model built from a training set. 

The SfM algorithm mainly recovers the geometric component of the face 
model, i.e., the depth value of every pixel. Its photometric component is naively 
set to the appearance in one reference video frame. Image-based rendering 
method, on the other hand, directly recovers the photometric component of 
the 3D model. Light field rendering [216, 219] in fact bypasses the stage of 
recovering the photometric of the 3D model but rather recovers the novel views 
directly. The light field rendering methods [216, 219] relax the requirement of 
calibration by a fine quantization of the pose space and recover a novel view by 
sampling the captured data that form the so-called light field. The 'eigen' light 
field approach developed by Gross et al. [76] assumes a subspace assumption 
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of the light field. In Zhou and Chellappa [97] (described in detail in Chapter 5), 
the light field subspace and the illumination subspace are combined to arrive at 
a bilinear analysis. Another line of research relates to 3D model recovery using 
the visual hull methods [218, 221]. But, the visual hull method assumes that 
the shape of the object is convex, which is not always satisfied by the human 
face, and also requires accurate calibration information. Direct use of visual 
hull for FR is not found in the literature. 

To characterize both the geometric and photometric components of the 3D 
face model, Blanz and Vetter [72] fitted a 3D morphable model to a single 
still image. The 3D morphable model uses a linear combination of dense 3D 
models and texture maps. In principle, the 3D morphable model can be fitted to 
multiple images. The 3D morphable model can be thought of as an extension 
of 2D active appearance model [212] to 3D, but the 3D morphable model uses 
dense 3D models. Xiao et al. [229] proposed to combine a linear combination 
of 3D sparse model and a 2D appearance model. 

Although there is significant interest in recovering the 3D model, directly 
performing FR using the 3D model is a recent trend [101, 116, 102]. Blanz and 
Vetter [72] implicitly did so by using the combining coefficients for recognition. 
Beumier and Acheroy [101] conducted matching based on 2D sections of the 
facial surface. Mavridis et al. [116] used 3D+color camera to perform face 
recognition. Bronstein et al. [102] used a 3D face model for compensating the 
effect of facial expression in face recognition. However, the above approaches 
use the 3D range data as input. Because in this chapter we are mainly interested 
in face recognition from multiple still images or video sequence, a thorough 
review efface recognition based on 3D range data is beyond its scope. 

Future approaches from multiple stills or videos 

Thus far, we reviewed the approaches that utilize the three properties. Al­
though they usually achieved good recognition performance, they have their 
own assumptions or limitations. For example, the Gaussian distribution used 
in Shakhnoarovich et al. [ 118] is easily violated by pose and illumination vari­
ations. The HMM used in Liu and Chen [115] poses a strong constraint on the 
change of face appearance that is not satisfied by video sequences that contain 
an arbitrarily moving face. 

In this section, we forecast possible new approaches. These new approaches 
either arise from new representation for more than one still image or extend the 
capability of the existing approaches. 

New representation 
In the matrix representation, multiple observations are encoded using a ma­

trix. In other words, each observation is an image that is 'vectorized'. The 
'vectorization' operator ignores the spatial relationship of the pixels. 
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To fully characterize the spatial relationship, a tensor can be used in lieu of 
matrix. Here, a tensor is understood as a 3-D array. Tensor representation is 
used in Vasilescu and Terzopoulos [88] to learn a generic model of the face 
appearance for all humans, at different views, and under different illuminating 
conditions, etc. However, comparing two tensors has not been investigated in 
the literature. 

In principle, the PDF representation is very general. But in the experiment, 
a certain parametric form is assumed as in Shakhnoarovich et al. [118]. Other 
PDF forms can be employed. The key is to find an appropriate density that 
can model the face appearance. The same problem appears in the manifold 
description. With advances in manifold modeling, FR based on manifold can 
be improved too. 

Using the training set 
The training set is usually used to provide a generic model of face appearances 

of all humans, while the images in the gallery set is related to an individualized 
model of face appearance belonging to the same person. If there are enough 
observations, one can build an accurate model of the face for each individual in 
the gallery set and hence the knowledge of the training set is not necessary. If the 
number of images is not sufficiently large, one should combine the knowledge of 
a generic model with the individualized model to describe the identity signature. 

3D model comparison 
As mentioned earlier, comparison between two 3D models has not been fully 

investigated yet. In particular, direct comparison of the geometric component 
of the 3D model is rather difficult because it is nontrivial to recover the 3D 
model in the first place and the correspondence between two 3D models cannot 
be easily established. 

Current approaches [229] warp the model to the frontal view and use the 
frontal 2D face appearance for recognition. However, these approaches are 
very sensitive to illumination variation. Generalized photometric stereo [95] 
can be incorporated into these approaches for a more accurate model. 

The most sophisticated 3D model is to use a statistical description. In other 
words, both the geometric component g and the texture component / have their 
distributions, say p{g) and/>(/), respectively. Such distributions can be learned 
from multiple still images/video sequence. Probabilistic matching can then be 
applied for FR. 

Utilizing more than one property 
Most of the approaches reviewed earlier utilize only one of the three proper­

ties. However, these properties are not overlapping in the sense that more than 
one property can be unified to achieve further improvements. 

Probabilistic identity characterization [131] proposed in Chapter 11 is an 
example of integrating the properties P I and P2, where FR from multiple still 
images and FR from video sequences are unified in one framework. 
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Statistical 3D model is a combination of properties P I and P3, where the 
PDF part of property P I is used. 

Visual tracking 

Roughly speaking, previous work on visual tracking can be divided into two 
groups with no clearly defined boundaries: deterministic tracking and stochastic 
tracking. Our approach combines the merits of both stochastic and deterministic 
tracking approaches in a unified framework using a particle filter. We give below 
a brief review of both approaches. 

Deterministic approaches usually reduce to an optimization problem, e.g., 
minimizing an appropriate cost function. The definition of the cost function is 
a key issue. A common choice in the literature is the sum of squared distance 
(SSD) used in many optical flow approaches [180]. In fact, using SSD is 
equivalent to using a model where the noise obeys an iid Gaussian distribution; 
therefore this case can also be viewed as stochastic tracking. A gradient descent 
algorithm is most commonly used to find the minimum. Very often, only a local 
minimum can be reached. In [180], the cost function is defined as the SSD 
between the observation and a fixed template, and the motion is parameterized 
as affine. Hence the task is to find the aflflne parameter minimizing the cost 
function. Using a Taylor series expansion and keeping only the first-order 
terms, a linear prediction equation is obtained. It has been shown that for 
the aflfine case, the system matrix can be computed efficiently since a fixed 
template is used. Mean shift [178] is an alternative deterministic approach to 
visual tracking, where the cost ftinction is derived from the color histogram. 

Stochastic tracking approaches often reduce to an estimation problem, e.g., 
estimating the state for a time series state space model. Early works [171, 177] 
used the Kalman filter or its variants [1]. However, this restricts the type of 
model that can be used. Recently sequential Monte Carlo (SMC) algorithms 
[6,179,245,248], which can model nonlinear/non-Gaussian cases, have gained 
prevalence in the tracking literature due in part to the CONDENSATION algorithm 
[183]. Stochastic tracking improves robustness over its deterministic coun­
terpart by its capability for escaping the local minimum since the searching 
directions are for the most part random even though they are governed by a 
deterministic state transition model. Toyama and Blake [195] proposed a prob­
abilistic paradigm for tracking with the following properties: Exemplars are 
learned from the raw training data and embedded in a mixture density; the 
kinematics is also learned; the likelihood measurement is constructed on a 
metric space. However, as far as computational load is concerned, stochastic 
algorithms in general are more intense. Note that the stochastic approaches can 
often be formulated as optimization problems. 
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FACE RECOGNITION UNDER VARIATIONS 



Chapter 3 

SYMMETRIC SHAPE FROM SHADING 

The basic idea of shape from shading (SFS) is to infer the 2.5D structure 
of a object from its shading information/image [151, 153, 10]. In order to 
quantitatively extract such information, we need to assume a reflectance model 
under which the image (the only measurement we have) is generated from the 
3D depth map. There are many illumination models available, which can be 
broadly categorized into diffuse reflectance models and specular models [156]. 
Among these models, the Lambertian model is the most popular one for diffuse 
reflectance and has been used extensively in the computer vision community for 
the SFS problem. Furthermore, in most SFS algorithms, the Lambertian model 
with known constant albedo is assumed (or the value of constant albedo can be 
easily extracted). Hence the goal of most SFS algorithms is to recover depth 
z[x, y] or its partial derivatives (p, q) from shading information (image intensity 
/ ) using a standard image irradiance equation. Some SFS algorithms also in­
clude source-from-shading (estimation of the light source direction). Zhang et. 
al. divide SFS algorithms into four groups: minimization approaches, propaga­
tion approaches, local approaches and linear approaches [169]. Minimization 
approaches obtain the solution by minimizing an energy fimction. Propagation 
approaches propagate shape information from a set of surface points (e.g., sin­
gular points) to the whole image. Local approaches derive shape based on the 
assumption of surface type. Linear approaches compute the solution based on 
the linearization of the reflectance map. 

The nature of SFS, inferring the 2.5D structure from limited observations 
(image intensities), makes it an ill-posed problem in general. This is sometimes 
reflected in an interesting phenomenon: many SFS algorithms can recover a 
'good' depth map for re-rendering the given image at the same lighting and 
viewing angles, but not good enough for rendering images at different lighting 
or viewing angles[10]. However it is very attempting to apply SFS in many 
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applications. For example, in face recognition we can apply SFS to infer the 
face shape information, and therefore simultaneously solve problems due to 
illumination and pose variations [29]. The advantage of SFS-based methods is 
that only one single input image is required when compared to other approaches 
proposed to solve the illumination and pose problems in face recognition. In 
addition, the soft facial skin makes SFS an appealing choice compared to other 
passive 3D recovery methods such as stereo where image correspondence needs 
to be established. 

In order to handle complex face images, we describe a varying-albedo Lam-
bertian model. This makes the SFS problem even more difficult. In this 
chapter, we examine the issues of traditional SFS algorithms and present a 
well-conditioned SFS algorithm by imposing the symmetry cue embedded in 
symmetric objects (e.g., face objects). The symmetry cue has also proven to be a 
powerful constraint in many face recognition methods, e.g., image synthesis for 
the illumination problem [91 ] and view-synthesis for the pose problem [75,92]. 
An efficient implementation of these methods would be to store only the pro­
totype images in the database and all testing images are converted/synthesized 
into the prototype images for facial ID matching. A prototype image Ip is 
defined as the frontal-lighted image of an frontal-view object. 

This chapter is organized as follows [93]: The following section proposes 
using a varying-albedo Lambertian model and shows that it is a more realistic 
model. Section 3.1 addresses the symmetry cue and introduces the self-ratio 
image. Section 3.2 presents a general theory of symmetric SFS. In Section 
3.3 we propose several computational algorithms to recover both shape and 
albedo and present experimental results. In addition, a model-based symmetric 
source-from-shading algorithm is presented for improved source estimation. In 
Section 3.4, we discuss the extensions of symmetric SFS and applications of 
symmetry cue for image synthesis and view-synthesis of face images. 

3.1 Symmetry Cue: Improved Model and Unique Solution 

3.1.1 Issues of traditional SFS 
There exist two issues with traditional SFS algorithms: the first is whether 

there exists a unique solution and the second is how complex a surface could 
be dealt with. 

Uniqueness issue 

There exist many potential applications of SFS in various fields including 
computer vision, computer graphics, robotics, and pattern recognition etc. Un­
fortunately, SFS is an ill-posed problem in general [209]. To overcome this 
short-coming, additional constraints have been proposed. For example, the 
smoothness constraint on shape is the most commonly used [10]. One drawback 
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of such a method is that it tends to over-smooth surface patches that have com­
plex structure. More recent approaches drop this constraint and replace it with a 
physically meaningful constraint known as surface integrability [10,149,213]. 

In theory, the uniqueness in SFS can be achieved by directly exploiting the 
existence of a singular point, i.e., the brightest point (/ = 1 and Ps = 0, Qs = 
0) [86, 148]. Uniqueness can also be guaranteed by enforcing the boundary 
condition (solutions to (p,q) on the boundary) if they are available [152]. The 
way to prove the uniqueness or construct a SFS algorithm (of propagation 
type) is to first identify the condition at the singular point or on the boundary 
and then propagate these solutions to the whole image. Following this basic 
idea, two similar approaches have been implemented [148, 147]. However in a 
recent survey paper [169], it has been shown that the algorithm by Bichsel and 
Pentland is outperformed by other two energy minimization approaches that do 
not guarantee a unique solution. 

Model sufficiency issue 

So far, we have focused on the uniqueness issue of SFS algorithms based 
on the assumption that the underlying physical model is Lambertian and the 
albedo is known and constant. The main reason why such a model is so popular 
in SFS literature is its simplicify. However, the widely used constant-albedo 
Lambertian model is just an approximate model for most objects in real world. 
And often the approximation is not good for real objects, for example, a human 
face. Human faces appear different not only due to the differences in the under­
lying 3D bone structures, but also due to the differences in texture. Moreover, 
different parts of a human face have different textures. Should we enforce a 
constant-albedo model on face objects and try to solve the SFS problem, poor 
depth estimates result since the depth parameter estimate needs to accommo­
date both depth and varying albedo. One proposed alternative is to segment out 
the cheek region and apply SFS to this region only with the assumption of con­
stant albedo in this region. This approach would leave some region unresolved. 
Furthermore, we would like to have a direct method that explicitly models the 
albedo variation. As obtaining a unique solution to the SFS problem in general 
is difficult, we adopt a simple varying albedo Lambertian model which has been 
suggested before for problems other than SFS [154, 165]. We believe that this 
model has modest complexity, yet sufficient to represent many man-made and 
natural objects. 

Conceptually, adopting a better reflectance model in SFS certainly helps us 
to solve real problems. But from earlier discussions on the uniqueness issue, we 
know that adding albedo as a fi-ee parameter makes SFS even more difficult to 
solve. Hence we need additional constraints such as symmetry and integrability. 
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3.1.2 The symmetry cue 
Symmetry is very useful information that can be exploited in many computer 

vision problems including SFS for fully orpartly symmetric objects [220]. Here 
we describe a direct method for incorporating this important cue: using self-
ratio images [93]. By directly imposing the symmetry constraint, we prove 
that we can achieve a unique global solution which consists of unique local 
solutions at each point simultaneously obtained using the intensity information 
at that point and the surrounding local region under the assumption of a C^ 
surface. This is different from existing propagation approaches which propa­
gate the unique (known or easily obtained) solutions at singular points or on 
the boundary to other points. Independent of our research, a recent paper [162] 
presented a shape reconstruction method for symmetric objects exploring sym­
metric information. This method is based on integrating geometric and pho­
tometric information. It can be categorized as a propagation approach since 
it propagates the self-correspondence function over the whole image from a 
given pair of self-corresponding points. Though it offers a solution for general 
configuration of lighting and viewing conditions, a constant-albedo Lambertian 
surface was assumed. 

In summary, imposing symmetry cue not only allows us to have improved 
modeling for symmetric objects but also guarantees a unique solution to the 
symmetric SFS problem. 

3.1.3 The Lambertian model 
As mentioned earlier, the most commonly used model in SFS literature is 

the Lambertian surface with constant albedo. However, it is not sufficient for 
many objects in real world. To illustrate this point, we use human face as an 
example. First, we demonstrate that SFS based on constant-albedo assumption 
does not recover the image (and the depth) accurately. Second, we show that a 
varying-albedo model is much better by comparing images synthesized under 
various illuminant directions using constant and varying albedos. 

To facilitate our discussion, let us review some standard definitions used in 
SFS. The key equation is the image irradiance equation [151]: 

I[x,y\ = R.{p[x,y\,q[x,y\) (3.1) 

where I[x,y\ is the image intensity of the scene, R is the reflectance map, 
andp[a;, y\,q[x,y\ are the shape gradients (partial derivatives of the depth map 
z[x, y\). With the assumption of Lambertian surface reflection and a single, 
distant light source, we have 

I = pcos9, 
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or 

1 + pP, + qQ, 

x / l + p 2 + q2^1 + p2 + , 
(3.2) 

where 6 is the angle between the outward normal to the surface n = (p, q, 1) 
and the negative illumination vector —L = (P,, Qs, 1) which represents the 
direction opposite to the distant light source, and p is the albedo. The surface 
orientation can also be represented using two angles, slant and tilt. Similarly 
the light source can be represented by illuminant direction slant and tilt. Even 
though the adoption of these angle terms as the standard in SFS literature is 
unfortunate since they are not mnemonic and frequently confused [ 10], we abide 
by the standard notations used in the SFS literature. More specifically, we use 
the angle terms slant and tilt exclusively for the illuminant direction throughout 
this book. The illuminant direction slant a is the angle between the negative L 
and the positive z-axis: a e [0^, ISO'̂ ]; and the illuminant direction tilt r is the 
angle between the negative L and the x-z plane: r G [—180*̂ , 180*̂ ]. To relate 
these angle terms to P, and Q.,, we have P, = tan a cos r, Qs = tan a sin r. 

SFS based on constant-albedo model 

To test how efficient some of the existing SFS algorithms are for real objects 
such as faces, we applied three SFS algorithms to synthetic face images gener­
ated based on a constant-albedo Lambertian model, and more importantly real 
face images: (1) Zheng and Chellappa [170] (a minimization method based on 
the variational principle), (2) Wei and Hirzinger [164] (a minimization method 
based on radial basis expansion), and (3) Tsai and Shah [ 163] (a linear approach 
based on linearization of the local depth map). All these methods have been 
shown to be effective on many synthetic and a few real images. From our own 
experiments on real face images, we found that the simple linear approach [ 163] 
works best when a 3D generic face model is given as the initial shape. Possible 
reasons for the simple linear approach being the best are: 1) the Lambertian 
model with constant albedo is inherently inconsistent with real images which 
can be modeled much better as having a varying-albedo, causing systematic 
errors; 2) the linear (local) approach does not propagate errors, while the min­
imization approaches propagate errors, making algorithms walk away from a 
good solution, and 3) the underlying surface is complex but a good initial depth 
map is available. 

In [170] the surface smoothness term usually employed in variational ap­
proaches was dropped. Instead, the image gradient constraint and surface inte-
grability were imposed. This suggests that the algorithm can handle relatively 
complex surfaces and guarantees that the reconstructed surface is physically 
meaningfiil. Zheng and Chellappa [170] minimized the following energy func-
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tion: 

jj{[R{p.q) - n^,y]? + [Rx - ix?] + [Ry - ly? + 

lA{P ^ Zxf + {q~- Zy)'^]}dxdy 

where R^, Ry are the partial derivatives of the reflectance map R. and yu is a 
weighting factor. 

By decomposing the depth map z[x, y] onto the radial basis fianctions $ 

N 

where tk and s^ are the parameters of the basis functions, Wei and Hirzinger [ 164] 
transformed the problem of estimating (p, q) and z into that of estimating the 
parameters w^- Estimation is then carried out by minimizing the energy func­
tion 

/ / 
{[R{p,q) ~ I[x,y]]^ + n[si[x,y]zl^ + S2[x,y]zly + 53(2;,y\zl^^}dxdy 

where si{x,y) {i = 1,2,3) are empirical quadratic smoothness constraints 
which allow for integrating prior knowledge. 

We have applied the local SFS algorithm [163] to dozens of real face images. 
The method is based on the linearization of the local depth z; hence the iteration 
at the n-th step is 

[x, y] • = z^ [x, y 
^f{z^-\x,y]) 

dz[x^y\ 

where / is I[x, j/] — R{%^^%) and the partial derivatives are approximated by 
forward differences | | « z[x, y] — z[x — 1, y] and |^ « z[x, y] — z[x, y — I]. 
In Figure 3.1, some of the best results using both synthetic and real face images 
is shown. In each case, we plot the given image (column 1) along with the 
recovered original image (column 2). In addition we plot the rendered prototype 
image (column 3) along with the real (approximate) prototype image (column 
4). An ideal prototype image Ip can be expressed as: 

More results are presented in Figure 3.2 with the input image, recovered original 
image and the rendered prototype image arranged in the same row. Notice that 
large portions of the recovered images are unsatisfactory as the method does not 
render face-like images. An image size of 96 x 84 is used in these examples. 
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Synthetic Image Case 

Real Face Image Case 

Figure 3.1. One of the best results obtained using the linear (local) SFS algorithm: First column: 
original input images; second column: recovered original images; third column: recovered 
prototype image; fourth column: real prototype image. 

Most traditional SFS algorithms do not generate reliable depth estimates for 
real face images. There are two reasons behind this: 1) the complex shape of 
face objects making regularization-based SFS algorithms inappropriate; 2) the 
presence of regions with different albedos (reflecting properties) from various 
parts (cheek, lip, eye, eyelid, etc.) of face objects making the constant albedo 
assumption used in most SFS algorithms invalid. 

A varying-albedo model 

To overcome the constant albedo issue in modeling objects such as faces, we 
propose a varying-albedo Lambertian model, i.e., p is now a function p[x, y]. 
To show that varying-albedo Lambertian model is a better model, we compare 
the image synthesis results obtained using constant albedo and varying albedo 
assumptions. In Figure 3.3, image synthesis results are compared one-by-one, 
i.e., a pair of images (in the same column) are synthesized exactly the same 
way except that one is using a constant-albedo model and the other is using a 
varying-albedo model. To obtain a realistic albedo we use a real face image 
and a generic 3D face model (one example in Figure 3.10). To align this 3D 
model to the input image, we normalize both of them to the same size with two 
eye pairs kept in the same fixed positions. Because the input image and model 
are not from the same object, we can see that some parts of the synthesized 
images are not perfect, for example, around the nose region. The same 3D 
model will be used throughout this chapter and we will see similar behavior. 
This model has also been used for model-based synthesis for recognition [91]. 
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Figure 3.2. Some of the results obtained using the local SFS algorithm. First column: input 
images; second column: recovered images; third column: recovered prototype images. 

It is worth noting that even the varying-albedo Lambertian model may not be 
sufficient due to the following reasons: 1) a real surface reflectance consists 
of both specular and diffuse components, 2) in practice the assumption of a 
single distant light source is not valid, and 3) the existence of noise in the 
image. Nevertheless Figure 3.3 clearly suggests that the varying-albedo model 
is much more realistic. However it introduces another unknown factor, the 
albedo p[x,y]. To cancel this additional parameter, we use the self-ratio image, 
described in the next sub-section. 

3.1.4 Self-ratio image: the albedo-free image 
Let us assume that we are dealing with a symmetric surface from now on. 

Obviously the background should be excluded since it need not be symmetric. 
Our definition of a symmetric surface is based on the following two equations 
(with an easily-understood coordinate system): 

z[x,y\ = z[-x,y\, (3.4) 

and 

p[x,y] = p[~x,y\- (3.5) 
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.1 
Figure 3.3. Image synthesis comparison under various lighting conditions. First row: constant-
albedo Lambertian model; second row: varying-albedo Lambertian model. 

One immediate property of a symmetric (differentiable) surface is that it has 
both anti-symmetric and symmetric gradients: 

P[x,y] = ~p[-x,y] 
q[x,y] = q[-x,y] 

We introduce the concept of self-ratio image to cancel the effect of varying 
albedo. The idea of using two aligned images to construct a ratio has been 
explored by many researchers [154, 165, 84]. Here we extend the idea to a 
single image [93]. Let us substitute Eqs. (3.5), (3.6) into the equations for 
I[x, y] and I[-x, y], and then add them, giving 

I[x,y] + I[-x,y] ^ 2p-t±^i==. (3.7) 

Similarly we have 

\ / l + p2 + g2 • 

vP 
I[x,y]^I[-x,y] = 2p ^ t (3.8) 

Vl +p^ + q'^ 
The above symmetric relations have also been explored by other researchers [ 162]. 
To simplify the notation, let us define /+ [x, y] = ^\.^-y\+^\-''->y'\ an^ /_ [x, y] = 

[x,?yj-̂  [~x,y\ •j-jjgjj jjjg seif-ratio image rj can be defined as 

. , /_ \x, wl 
ri[x,y\ = - | ^ , 3.9) 

i+[x,y\ 



54 UNCONSTRAINED FACE RECOGNITION 

which has a very simple expression 

Using the self-ratio image, we can develop a new SFS scheme which is the 
topic of Section 3.2. The new SFS scheme has elegant properties such as the 
existence of a unique solution. In addition, self-ratio images help improve 
model-based source-from-shading methods. In summary, the self-ratio image 
allows us to represent real images better with the guarantee of a unique solution. 

3.2 Theory of Symmetric Shape from Shading 
In this section we show the main result of symmetric SFS. That is, there exists 

a unique solution to the symmetric SFS problem. Significantly, the unique 
global solution consists of unique local solutions at each point simultaneously 
obtained using the intensity information at that point and the surrounding local 
region under the assumption of a C^ surface. To proceed, we start from the 
easiest case when the constant albedo is known. We then extend to the case 
where both the constant albedo and shape are unknown. Finally, we show that 
there exists a unique solution in the case of non-constant (piece-wise constant) 
albedo. In all cases, degenerate conditions, including special surfaces, lighting 
configurations and shadow points where point-wise symmetric SFS recovery 
can not be carried out, are indicated. 

3.2.1 Basic notations 
Denoting the right-hand-side of Eq. (3.10) as the self-ratio symmetric re­

flectance map rji{p, q), we arrive at the following self-ratio image irradiance 
equation: 

r/[x,y] =rR{p[x,y\,q[x,y\). (3.11) 

We refer the problem of recovering the shape information of a symmetric ob­
ject using image irradiance equation (Eq. (3.1)) and self-ratio image irradiance 
equation (Eq. (3.11)) as symmetric SFS. 

Explicit use of the symmetric property reduces the number of unknowns 
by half as suggested by Eqs. (3.5) and (3.6). In terms of the reflectance map, 
symmetric SFS has two reflectance maps R{p, q) and rR(p, q) while SFS only 
has one R{p,q). Figure 3.4 compares the two reflectance maps; one has a 
nonlinear structure and another has a linear structure (except on the singular 
point of a rational function). 
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Figure 3.4. Comparison of reflectance maps: p = 1, P., = 0.3 and Qs = 0.7. The plot in 
(a) is the regular SFS reflectance map R(p, q)) while the plot in (b) is the symmetric reflectance 
map rn(p, q). 

3.2.2 Symmetric SFS with constant albedo 
When the albedo is constant across the whole image plane, symmetric SFS is 

a well-posed problem. More specifically, the shape information can be uniquely 
recovered at each point locally. In the following discussion, we first assume 
that the constant albedo value is known, and then discuss how to recover this 
unknown value. 

T>ivo poulblo solutlora of symmalitc SFS (constant aKwdo) 

• \ ^ ^ ; \ \ p - > 

^\,,^-^. 

Figure 3.5. Two possible solutions for symmetric SFS with constant albedo. This is a direct 
result of combining plots (a) and (b) in Figure 3.4. 

Since symmetric SFS has two reference maps (Figures 3.4(a) and (b)), it is 
obvious that the true solution to (p, q) must lie at the intersection of these two 
maps (Figure 3.5). Having at most two intersections implies that there are at 
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most two possible solutions, in the absence of additional constraints. Mathe­
matically this is so because we have a quadratic equation for q, for example. 
After some algebraic manipulations, we can write the quadratic equation for q 
from Eqs. (3.2) and (3.10) 

[S{1 + C-§^f) - (1 + TjfQ'M' + 2Q..[SCM' - {rj + l)\ 

+ [5(1+ ( § ) ' ) - ( 1 + ^7)2] =0,(3.12) 

where S is defined as 

S={l + P^ + Ql){I/pf. (3.13) 

Note that once q is obtained, p is uniquely determined based on Eq. (3.10). To 
simplify the notation, we write the coefficients of second order, first order and 
the constant item of Eq. (3.12) as a, b and c. Now let us denote the two possible 
solutions for qasq+_ = Tl+T2 and q- =Tl~ T2, where Tl, T2 are defined 

as — ̂  and 2a '̂"' respectively. 
For convenience, we can label a point based on the possible solutions for q 

at this point, for example, as V- and/or V+. It is possible that q^ = </_ at this 
point, i.e. Eq. (3.12) has double roots. In this case, we can give it a special 
label, for example, Vo- It should be clear that a point could have 2 labels V-
and V+ (q- ^ q+), or one special label VQ (g_ = q+). To describe all the 
points in a image, let us formally define Vb as the set of points where Eq. (3.12) 
has double roots, i.e., {[x,y]|q[a;,y] = T l } . Similarly we can define V+ and 
V- as the set of points where q = q+ and q = q^ respectively (g_ ^ q+). 
We should emphasize that sets V- and V+ are not necessarily exclusive, i.e., 
an image point could belong to both sets. However, VQ and V- are exclusive 
in our definitions. So are VQ and V+. This implies that the number of possible 
global solutions for symmetric SFS is infinite (or up to the square of the total 
number of pixels in case of digital images) because each point could have up 
to 2 local solutions if no fiirther constraints are taken into account. 

In case of a constant albedo, we can achieve a unique global solution which 
can be obtained at each point simultaneously. Theorem 3.1 states that we 
can obtain this unique solution based on a known albedo. Theorem 3.3 then 
shows that we can solve for both (p, q) and albedo uniquely. For proof of these 
theorems, please refer to [93]. 

THEOREM 3.1 With a known constant albedo p, the symmetric SFS problem 
has a unique solution which consists of unique local solutions at each point 
simultaneously obtained using the intensity information at that point and the 
surrounding local region for a symmetric C^ surface z excluding the following 
special conditions: 
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• the surface z cannot have the following special form 

zix',y') = Fix')+Giy'), (3.14) 

where the new coordinate system x'-y'-z' is obtained by rotating the x-y 
plane about the z-axis by r. 

• slant angle a = O": Ps = 0 and Qs = 0. Here the image is ihe prototype 
image and only the regular SFS algorithms can be applied. 

• tilt angle T = 90̂ *: P, = 0, and Qs ^ 0. Here regular SFS can be applied 
at all points. 

Moreover symmetric SFS cannot be performed at a shadow point (including 
both attached-shadow and cast-shadow). Here only regular SFS can be applied 
to its symmetric counterpart {—x, y) if it is not a shadow point. 

Determining ttie albedo value 

Up to now, we have assumed that the constant albedo value is already known, 
as in most existing SFS algorithms. What about the unknown constant albedo 
case? In some special cases, we cannot recover both shape and albedo. For 
example, when we have a planar surface, albedo and shape carmot be uniquely 
determined if the true angle 9t is not zero degrees or the true albedo value is 
not 1: ptcos{9t) = pcos{9). On the other hand, determining the albedo can 
be trivial. For example, if we assume the existence of brightest points {Imax), 
immediately we have p = Imax, and p = P,, g = Q^ at these points. 

Excluding these special cases, we show that we can uniquely determine the 
albedo value based on the following Lemma (see [93] for the proof): 

LEMMA 3.2 Excluding the special conditions listed in Theorem 3.1, usually 
there is only one choice of albedo value pt (the true value) which can satisfy 

Ca(p) = 0, (3.15) 

where Ca{p) is defined as //^^ l ~ ^ Q^\dxdy. The exceptions can occur 
only when the following configuration is true: 

or when the surface satisfies 

q\x-Q = constant. 

where all measurements S", r^ are in the new coordinate system x'-y'-z' which 
is obtained by rotating the x-y plane about the z-axis by T. 
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One simple example of special conditions is when the surface is a symmetric 
planar surface. Combining Lemma 3.2 and Theorem 3.1, we have proved the 
following theorem: 

THEOREM 3.3 For symmetric SFS, we can recover both the constant albedo 
value and the partial derivatives (p, q) uniquely except in those special condi­
tions listed in Lemma 3.2 and Theorem 3.1. 

3.2.3 Symmetric SFS with varying albedo 
When albedo is not constant across the whole image plane, the situation 

becomes complicated since we need to recover both (p, q) and p[x, y\ from just 
one image. At first glance, it seems that we can just use the self-ratio image 
irradiance equation (Eq. (3.11)) and the smoothness constraint to recover the 
shape information as in ordinary SFS. But using the self-ratio image irradiance 
equation alone may not be a good idea. This is because all line contours 
(corresponding to different r/'s) are passing through the singular point (p = 
0,9 = — ̂  in Figure 3.4(b)), and the true solution may be far away from the 
singular point. More specifically, enforcing the local smoothness constraint, or 
equivalently finding the solution (p, q) at a point [x, y] in the linear reflectance 
map r/ that is closest to all lines corresponding to the local neighborhood of 
[x, y], may not be stable. 

Piece-wise constant albedo field 
However if the albedo field has a special form, that is the field can be di­

vided into regions each having a constant albedo, then it is possible to recover 
both shape and piece-wise albedo information. Expanding Theorem 3.3 and 
using the assumption that p is piece-wise constant, we can prove the following 
theorem: 

THEOREM 3.4 If the depth z is a Ĉ  surface and the albedo field is piece-wise 
constant, then both the solutions for shape (p, q) and albedo p are unique except 
in those special conditions listed in Theorem 3.1 and Lemma 3.2. 

Proof: The piece-wise constant albedo field can be fully described in two 
parts: 1) the partition V of the 2D albedo field which divides the whole field 
into connected regions i?f each having a constant albedo value (neighboring 
regions cannot have the same albedo value), and 2) the albedo value pav for 

i 

each region Rf. To prove the theorem, we also need the following facts: 
• p, q, ri and S are continuous across the whole image plane except at shadow 

points. So are a, b, c and Tj, T2. 

• / is piece-wise continuous except at shadow points, i.e., continuous within 
each constant albedo region Rf. If the whole image plane has just one 
albedo value, then I is continuous. 
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The proof is in two steps: we first siiow that the partition of the albedo 
field is unique, and we then prove that we can recover the albedo value in each 
constant-albedo region uniquely and hence (p, q) uniquely. Refer to [93] for 
more detail. 

Arbitrary albedo field 

For an albedo field which is purely continuous, the problem becomes difficult 
and we leave it as an open issue for fiiture research. 

easel 

\ V 
(c) (d) 

case II 

/ 

\ 

case III 

Figure 3.6. Simulation results for cases I, II and III (Algorithm 1). The plots are arranged in 
rows with each row representing one case. All plots in the first column, i.e., the plots in (a), (c) 
and (e), are the recovered shape information (p, q). The plot in (b) is the underlying depth map 
of zi_, the plot in (d) is the shadow map (dark part), and the plot in (f) is the map for regions 
Vb, V_ and V-^-. (The strange appearance of Vb is due to the simple shrinking algorithm used to 
shrink the initial region Vb based on the threshold. In ideal case, it would be just a curve with 
no branches. A similar appearance occurs in case IV (Figure 3.7).) 
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3.3 Symmetric SFS Algorithms and Experiments 
In this section, we propose several simple computational algorithms to re­

cover both shape and albedo based on the results derived in Section 3.2. We 
also carry out experiments using synthetic data and real images to test these 
algorithms. 

3.3.1 Symmetric SFS with constant albedo 
Albedo is known 

Based on Theorem 3.1, we propose the following algorithm to perform shape 
recovery. 
Algorithm I 

1 Compute T2 values at all image points and determine the zero locations based on 
thresholding. This procedure generates the Vo set. If the set Vo is empty, then step 
2 can be omitted and the whole image plane is denoted by Ra. 

2 Use component-connection algorithms to label the connected regions separated by 
Vo: Ri{i='l m). 

3 For each labelled region Ri (i=l, ..., m), the choice between g+ and q_ is based 
on comparing the following two values: 

We now illustrate how symmetric SFS can be used to recover (p, q). We 
demonstrate the recovery results for the following cases: 

• case I Vo is empty and there are no shadow points in the whole image plane. 

• case II VQ is empty and there are shadow points. 

• case III Vo is not empty and there are no shadow points. 

• case IV Vo is not empty and there are shadow points. 

Two depth fiinctions are used: zi = si (cos ; ^ ) (1 -|- 0.5 sin ^ )^ and Z2 = 
S 2 { c o s ^ ) ^ ( s i n ^ ) . Cases I, II, IV correspond to depth zi with scalar si 
being 5, 15, and 40 respectively, while case III corresponds to depth Z2 with 
scalar S2 being 25. The illumination angles in all cases are the same: a = 60" 
and r = 135^. In the examples which contain shadow points, we leave the 
shape information un-recovered at those shadow points and their symmetric 
counterparts. 

Albedo is unknown 
Based on Theorem 3.3, we have the following algorithm to recover both 

constant albedo and shape. 
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Figure 3.7. Simulation results for case IV (Algorithm I). The plot in (a) is the recovered shape 
information, the plot in (b) is the map for regions Vb, V- and V+, and the plot (c) is the shadow 
map (dark part). 

Algorithm II 
1 Hypothesize the value of the constant albedo p. For example, this can be done by 

simply sampling [0,1]. 

2 Apply Algorithm I with the hypothesized albedo value. 

3 Compute Ca(p): if C„(p) < threshold (theoretically this should be zero), we are 
done; otherwise, go to step 1 with a diiferent hypothesis. 

We verify this algorithm in the following simulations. The simulated data 
here are exactly the same as in previous experiments (Figs. 3.6 and 3.7) except 
that now the true albedo is 0.5 instead of 1. Figure 3.8 plots log(Ca(p) + 1) 
versus the hypothesized p values in all four cases. As can be seen, the minimum 
is always obtained at the true albedo value. Though ideally the minimum should 
be zero, in practice this is not the case due to numerical errors. 
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(case I) 

(case III) 

(case II) 

(case IV) 

Figure 3.8. Determining albedo value by checl«ing \og{Ca{p) + 1) for a iiypothesized p value 
(Algorithm II). The true albedo value is 0.5 in all cases. 

3.3.2 Symmetric SFS with non-constant albedo 
Based on Theorem 3.4, we present the following simple algorithm: 

Algorithm III 
Determine the partition V of the albedo field by finding the discontinuities of the 
image intensity field. 

Hypothesize a possible value pi for each region flf, and apply Algorithm I. 

Compute Ca{p[x, y\) and Cc.{p{x, y\) to determine if they are small enough so a 
different hypothesis is not needed. Here Cc (p[x, y\) is the measurement of surface 
discontinuity. Ca{p[x, y\) is a generalized version of Ca(p) since p[x, y\ is not a 
constant any more: 

Ca{p[x,y\) •• ^IL I dv[p) 
dy dx 

\dxdy. (3.17) 

It should be noted that this simple algorithm is not robust since it depends 
on the assumption that discontinuities in image intensity only occur along the 
borders of the albedo partition, and in practice this is not true for digitized 
images of complex objects. 

To verify this simple algorithm, we show a simple example (Figure 3.9) 
in which we first recover the simple albedo field (piecewise constant) and 
then recover the shape information. More specifically, we first use an image-
histogram-based approach to segment the albedo field, and then apply algorithm 
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II to recover both shape and albedo. The simulated data here is very similar to 
depth function Z2, but we have a piece-wise constant albedo field with values 
0.5, 0.8 and 1. 

0 .07 
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Figure 3.9. Simulation result for varying albedo symmetric SFS (Algorithm III). The plot in 
(a) is the recovered shape information (p, q), the plot in (b) is the recovered albedo field, and the 
plot in (c) is the true depth map. 

3.3.3 Symmetric SFS for real complex images 
We have proved that up to piece-wise-constant albedo case, we can recover 

both albedo and shape. And we have provided simulation results to demonstrate 
that capability. However, when it comes to real and complex objects, solving 
symmetric SFS is not trivial. A complex object could have both complicated 
shape and complex yet continuous albedo. From a theoretical point of view, we 
have not been able to prove the uniqueness of solution for such a general case. 
In other words, the proposed Algorithm III is not sufficient enough to handle 
these objects by recovering first the albedo and then the shape. To illustrate 
such a case, we plot in Figure 3.10 the albedo field computed using a real face 
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image and a generic 3D model (the same pair is used in Figure 3.1). Clearly the 
albedo field is very complicated and we need to develop better algorithms. If 
the problem is somehow reduced to illumination-normalization, i.e., obtaining 
the prototype image from a given image, then it is possible without actually 
solving the shape information [91, 84]. 

- ' • > • ' * • ^ 

Figure 3.10. Face model, image and albedo field. 

We have carried out a series of experiments applying symmetric SFS to 
different face images. All these images are synthesized under the same lighting 
condition using the generic 3D face model (Figure 3.10) but with different 
albedo model: 1) constant albedo, 2) piece-wise constant albedo, and 3) natural 
face albedo (Figure 3.10). By constructing such data with known ground-truth, 
we can test proposed simple algorithms under different conditions ranging from 
easy (but not realistic) to difficult (but realistic). In Figure 3.11 we plot the input 
and reconstructed images, partial derivatives side-by-side for constant albedo 
and piece-wise constant albedo cases. Similarly Figure 3.12 is for natural albedo 
case. 

As can be seen in the experiments, the simple symmetric SFS algorithm 
III is able to handle objects of complex (face) shape with constant and piece-
wise constant albedos (Figure 3.11). And the results are perfect except in the 
shadow points (e.g., compare the original image and the reconstructed image 
in Figure 3.11(a),(b), and notice the reconstructed image (b) has unrecovered 
part due to the shadow map in Figure 3.11(d)) or their counterparts since we 
did not recover shape information at these points. However it is entirely pos­
sible to recover the shape information at these points by applying the regular 
SFS to their symmetric counterparts (if they are not shadow points) with known 
boundary conditions which are uniquely solved for using symmetric SFS [152]. 
A more practical and easy approach would be to interpolate information avail­
able. In the case of natural albedo field, algorithm III turns out to be not 
sufficient(Figure 3.12). The algorithm was able to recover a sensible piece-
wise constant albedo field (Figure 3.12(b)) from the input image. But it is not 
equal to the original continuous albedo field (the right-most plot in Figure 3.10). 
The recovery of one partial derivative (right image in Figure 3.12(d)) is good 
compared to the true one (right image in Figure 3.12(c)). However, the re-
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Figure 3.11. Face shape and image reconstruction results using symmetric SFS: the cases of 
constant albedo and piece-wise constant albedo. The plots in the first row are input images (left) 
and reconstructed images (right): (a) is for the constant albedo case, (b) is for the piece-wise 
albedo case. The plots in the second row are the true partial derivatives (c) and recovered partial 
derivatives (d). Plot (e) represents the shadow map in the input images which explains the holes 
in the reconstructed images. Plots (c), (d) and (e) are valid for both constant albedo and piece-
wise constant albedo cases since they are the same. However, plot (f) is the recovered albedo 
filed only valid for the piece-wise constant albedo case. 

(a) (b) 

(cj (d) 

Figure 3.12. Face shape and image reconstruction result using symmetric SFS: the case of 
natural face albedo. The plots in (a) are input images (left) and reconstructed images (right). 
Plot (b) is the recovered albedo filed. The plots in the second row are the true partial derivatives 
(c) and recovered partial derivatives (d). 
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covery of the other partial derivative is not good. Hence the final result is not 
comparable to the previous two cases (Figure 3.11). The quantifiable algorithm 
performance differences among different cases suggest that we need to design 
new and practical algorithms which seek a good solution instead of a perfect 
solution. 

3,3.4 Model-based symmetric source-from-shading 
As in SFS, symmetric SFS also requires estimating light source as a pre­

processing step. The task of recovering the light source is called source-from-
shading. Many source-from-shading algorithms are available [155, 159, 170], 
but we found that most of them do not work well for both tilt and slant angles 
in the case of real face images. Instead, we propose a model-based symmetric 
source-from-shading algorithm [93]. 

Model-based source-from-shading algorithms are commonly used in prac­
tice, for example, in handling face images [71]. Basically it can be formulated 
as a minimization problem 

{a*,T*) = arg„_^min(/M(a,r)) - if. (3.18) 

where / is the input image, and IM is the image generated from a 3D generic 
shape M based on Lambertian model (Eq. (3.2)) with constant albedo given 
hypothesized a and r. One advantage of using a 3D model is that we can 
take into account both attached-shadow and cast-shadow effects, which are not 
utilized in traditional statistics-based methods. Meanwhile, we notice that this 
method has one drawback, that is we are using a constant-albedo Lambertian 
model for objects such as face. We fix this problem by using the self-ratio 
image defined in Eq. (3.10), yielding a new model-based approach by solving 
the following minimization problem 

{a*,T*) = arg„_^min(r/^,(Q;,T)) -rjf. (3.19) 

where rj is the self-ratio image, and r/̂ ^̂  is the self-ratio image generated from 
the 3D generic model M given hypothesized a and r . 

For a simple comparison of these two model-based methods, we ran both 
these algorithms on real face images. In Figure 3.13, we plot one face image 
along with the error-versus-slant curve for each method. As can be seen, the 
correct (subjective judgment) value of slant (8'̂ ) has been recovered by the 
symmetric method (Eq. (3.19)). However, it is missed using (Eq. (3.18)). This 
new symmetric source-irom-shading method has been successfiilly applied to 
more than 150 real face images as the pre-processing step prior to illumination-
normalization for face recognition [91]. 
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Figure 3.13. Comparison of model-based source-from-shading algorithms. The correct slant 
value was recovered using the algorithm (Eq. (3.19)) (right figure), while it was missed using 
algorithm (Eq. (3.18)) (middle figure). 

3.4 Beyond Symmetric SFS 
Using the self-ratio image, a new symmetric SFS scheme has been developed 

and proved to have a unique solution which can be obtained at each point 
simultaneously. The new symmetric SFS presented in this chapter has the 
following advantages over existing SFSs for symmetric objects: 

• It not only has a unique solution for {p, q) but also a unique solution for 
albedo. Here the albedo can be either constant or piece-wise constant across 
the whole image plane. Significantly, the unique (global) solution can be 
obtained at each point simultaneously under usual conditions. 

• Combining symmetric SFS and regular SFSs, unique solutions at shadow 
points can be obtained. More specifically, after recovering the unique solu­
tions for (p, q) at lighted points, the regular SFS algorithms can be applied to 
the symmetric counterparts (which is lighted) of the shadow points. Since 
the boundary conditions (values at surrounding lighted points) are given, 
regular SFS is likely to be well-posed and have a unique solution [152]. 

• Compared to photometric stereo algorithms [ 166,15 8], the registration prob­
lem of multiple images has been alleviated. 

3.4.1 Statistical symmetric SFS 
One interesting development along symmetric SFS is the so-called statistical 

symmetric SFS [74]. The relationship between this statistical symmetrical SFS 
and the symmetrical SFS proposed in this chapter is similar to the relationship 
between SFS and the statistical SFS [71]. Just as in [71], a sequence of laser-
scanned range images of real human heads are used to transform the symmetric 
SFS problem into a parametric problem; hence, a more stable and easier-to-
compute version of symmetric SFS. 

So far we have been focusing on how to improve shape from shading by 
exploring the symmetry property of symmetric objects directly. The symmetry 
cue has also been applied successfully in other applications [91, 75, 92, 95]. 
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In the following, we briefly discuss some practical applications of enforcing 
symmetry cue, in particular, face recognition. 

3.4.2 Image and view synthesis 
The first application is to synthesize the prototype image from a given front-

view image under a different illumination condition. This technique is useful 
for improving the performance of existing face recognition systems when only 
one image is available [91]. Based on the assumption that all faces share a 
similar common shape, we can shorten the two-step procedure of obtaining 
the prototype image from a given image (1. given image to shape via SFS, 
2. recovered shape to prototype image) to one direct step: image to prototype 
image with the aid of a generic 3D head model. 

Comparing Eq. (3.7) and Eq. (3.3), we obtain 

where AT is a constant equal to \ / l + P | + Ql- This simple equation directly 
relates the prototype image Ip to I[x, y\ + I[x, —y] which is already available. 
It is worthwhile to point out that this direct computation of Ip from / offers the 
following advantages over the two-step procedure: 

• There is no need to recover the varying albedo p[x,y]. 

• There is no need to recover the full shape gradients (p, q). 

The only parameter that needs to be recovered is the partial shape information q. 
Theoretically, we can use the symmetric SFS algorithm to compute this value. 
But as we discussed earlier, due to practical issues of using just one image, we 
approximate this value with the partial derivative of a 3D face model and use 
the self-ratio image equation (Eq. (3.9)) as a consistency checking tool [91]. A 
better way could be to deform the generic model based on image contour [106]. 

In Figure 3.14 we compare the results of rendering the prototype images 
using 1) local SFS and model-based source-from-shading and 2) direct compu­
tation based on SSFS plus a generic 3D face model and model-based symmetric 
source-from-shading. These results clearly indicate the superior quality of the 
prototype images rendered by direct computation. 

For face object under out-of-plane rotation we can apply view-synthesis 
based on similar idea [92]. This can be done by first determining the 3D pose 
of the object and then rotating it back [106, 92]. In order to facilitate this 
procedure, we need the following lemma (see [92] for details): 

LEMMA 3.5 Suppose that, after the underlying surface is rotated in the x-z 
plane about the y-axis by 0 (anti-clock-wise), the partial gradients {p[x,y],q[x,y]) 
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Figure 3.14. Image rendering comparison. All the original images are listed in the first column. 
The second column represents the prototype images rendered using the local SFS algorithm. 
Prototype images rendered with symmetric SFS are plotted in the third column. Finally, the 
fourth column represents real images which are close to the prototype images. 

become {jP[x', y'],q^[x', y']); then they are related by 

q^[x',y'] q[x,y]cos0o (3.21) 
cos(fl+eo) ' 

where tan^o = p[x, y\-

In Figure 3.15, we illustrate the synthesized images under different rotations 
and illuminations (with a Lambertian model). 

In [167], a method has been proposed to perform pose-normalization while 
the lighting condition is kept unchanged. For a given non-frontal view of a 
symmetric object under a non-frontal illumination, they first generate the mirror 
image of the object under the same illumination condition as the original view. 
They then apply view morphing technique to synthesis the frontal view image 
under the same illumination. 
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Figure 3,15. Rendering images under different rotations and illuminations using the generic 
face head. The images are arranged as follows: in the row direction (left to right) the images are 
rotated by the following angles: 5°, lO", 25", and 35°; in the column direction (top to bottom) 
images are illuminated under the following conditions: pure texture warping (no illumination 
imposed); (a = O"); and (a = 30°, r = 120"), 



Chapter 4 

GENERALIZED PHOTOMETRIC STEREO 

We present a theory of generalized photometric stereo and its appHcation to 
face recognition. In the first part, we present the generalized photometric stereo 
algorithm that is able to handle all appearances under different illuminations of 
all objects in a class, in particular the human face class, whereas the ordinary 
photometric stereo algorithm handles the appearances belonging to one object 
under different illuminations. In the second part, we evaluate this algorithm 
in its application to face recognition under illumination variation. Since this 
generalization is linear, the blending linear coefficients offer an illuminant-
invariant identity signature. 

Figure 4,1. The top row displays an example of an object-specific ensemble, which contains 
images of one object under eight different light sources. This can be handled by the ordinary 
photometric stereo algorithm. The bottom row displays an example of a class-specific ensemble, 
which contains images of eight different objects illuminated by eight different lighting sources. 
This cannot be handled by the ordinary photometric stereo algorithm but can be handled by the 
proposed generalized photometric stereo algorithm. Imagery courtesy of [75]. 

Figure 4.1 motivates the proposed approach. The top row of Figure 4.1 
displays one Yale object [75] under eight different light sources. This is an 
example of an object-specific ensemble. Photometric stereo algorithms [150, 
161] take object-specific ensemble as input and recover the varying albedos and 
surface normals for the object, even assuming no knowledge of the illumination 
conditions. Here, by photometric stereo algorithm we mean any algorithm that 
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utilizes a Lambertian reflectance model to describe the visual appearance and 
has a capability of recovering the albedos and surface normals involved in 
the reflectance model. However, ordinary photometric stereo algorithm cannot 
handle the images in the second row of Figure 4.1, where each image represents 
a different object under a different light source. This gives an example of a class-
specific ensemble. The need to handle class-specific ensemble motivates us to 
propose a generalized photometric stereo approach. 

As in ordinary photometric stereo algorithm, the generalized photometric 
stereo algorithm utilizes a Lambertain refletance model to represent the visual 
appearance. The significant difference between the ordinary and generalized 
photometric stereo algorithms lies in the image ensemble they analyze. The 
object-specific image ensemble that the ordinary photometric stereo algorithm 
analyzes consists of the appearances of one object under different illuminations 
while, in general, the class-specific image ensemble that the generalized photo­
metric stereo algorithm analyzes consists of the appearances of different objects, 
with each object under a different illumination. Analysis of the latter image 
ensemble is very difficult. To further complicate the matter, the knowledge of 
the basis objects is also unknown and to be recovered. To this end, we introduce 
a key assumption: These different objects belong to one class (for example, the 
human face class) so that they are linearly spanned by a fixed number of basis 
objects. Generalized photometric stereo does not assume any knowledge of the 
lighting sources as well as the blending coefficients. Rather, the generalized 
photometric stereo approach actually recovers these parameters. 

We evaluate the generalized photometric stereo algorithm in a face recog­
nition application. The key assumption has two important implications. First, 
it fits with the requirement of a recognition task that needs a generalization 
capability built on a training set. The idea is to learn the basis objects from 
the training set. Once learned, we use them to cope with arbitrary images be­
longing to objects other than those in the training set. Secondly, because the 
bases are for the object class only, the blending coefficients provide an identity 
encoding that is invariant to illumination. We employ them for illumination-
variant face recognition in the presence of a single light source, which results in 
good recognition performance. Up to now, the shadow pixels are excluded for 
computation. We further extend the above analysis to directly incorporate the 
nonlinearity in the Lambertian model that accounts for attached shadows. We 
validate this extension in the application of illumination-variant face recognition 
in the presence of multiple light sources. 

Section 4.1 elaborates the generalized photometric stereo algorithm and ad­
dresses its issues and challenges. Sections 4.2 and4.3 detail the face recognition 
setting and present experimental results using the PIE database. Section 4.2 fo­
cuses on face recognition in the presence of a single light source and Section 
4.2 on multiple light sources. 
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4.1 Principle of Generalized Photometric Stereo 
This section describes the generalized photometric stereo algorithm. We 

begin in Section 4.1.1 with a brief review of the related literature and highlight 
the advantages of the proposed approach. We list in Section 4.1.2 the setting 
and constraints. Then we present a method for recovering the albedos and 
surface normal for a class in Sections 4.1.3 and 4.1.4. Section 4.1.3 discusses 
the task of separating the illumination (v./.z. finding the illuminant vector and 
the blending coefficient) from an arbitrary image, which is used in the recovery 
algorithm presented in Section 4.1.4. 

4.1,1 Literature review and proposed approach 
Recovery of albedos and surface normals has been studied in the computer 

vision community for a long time. Usually a Lambertian reflectance model, 
ignoring both attached and cast shadows, is employed. Early works from the 
SFS literature assume a constant albedo field: this assumption is not valid 
for many real objects and thus limits the practical applicability of the SFS 
algorithms. Early photometric stereo approaches also require the knowledge 
of lighting conditions, but such knowledge is hard to gather under uncontrolled 
scenarios. Recent research efforts [75, 150, 161, 84, 168, 93, 144, 143, 90] 
attempt to go beyond these restrictions by (i) using a varying albedo field, a 
more accurate model of the real world, and (ii) assuming no prior knowledge or 
requiring no control of the lighting sources. As a consequence, the complexity 
of the problem has also increased significantly. 

If we fix the imaging geometry and only move the lighting source to illumi­
nate one object, the observed images (ignoring the cast and attached shadows) 
lie in a subspace completely determined by three images illuminated by three 
independent lighting sources [161]. If an ambient component is added [168], 
this subspace becomes 4-D. If attached shadows are considered, the subspace 
dimension grows to infinity [145] but most of its energy is packed in a limited 
number of harmonic components, thereby leading to a low-dimensional sub-
space approximation [160, 144,143]. However, all the photometric-stereo-type 
approaches (except [84, 90]) commonly restrict themselves to object-specific 
samples and cannot perform reconstruction using an ensemble of images be­
longing to different objects. 

In this chapter, we present a generalized photometric stereo algorithm that is 
able to handle all appearances of all objects in a class, in particular the human 
face class. To this end, we impose a rank constraint (i.e. a linear generalization) 
on the albedos and surface normals of all human faces. We choose the human 
face as a working example because it naturally fits in our framework and is 
widely studied in the photometric stereo literature; however this does not pose 
any constraints in applying our algorithm to other appropriate cases. 
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We propose a rank constraint on the product of albedo and surface normal. 
The rank constraint enables us to accomplish a factorization of the observation 
matrix that decomposes a class-specific ensemble into a product of two matrices: 
one encoding the albedos and surfaces normals for a class of objects and the 
other encoding blending linear coefficients and lighting conditions. A class-
specific ensemble consists of exemplar images of different objects with each 
under a different illumination, which is beyond what can be analyzed using 
bilinear techniques of [214]. Bilinear analysis requires exemplar images of 
different objects under the same set of illuminations. Because a factorization 
is always up to an invertible matrix, a full recovery of the albedos and surface 
normals is not a trivial task and requires additional constraints. We use two 
constraints: surface integrability and face symmetry. 

The surface integrability constraint [10, 149, 213] has been used in several 
approaches [75, 168] to successfully recover albedo and shape. The symmetry 
constraint has also been employed in [162, 93] for face images. We present an 
approach to fusing these constraints to recover the class-specific albedos and 
surface normals, even in the presence of shadows. More importantly, this ap­
proach takes into account the effects of a varying albedo field by approximating 
the integrability terms using only the surface normals instead of the product 
of the albedos and the surface normals. Due to the nonlinearity embedded 
in the integrability terms, regular algorithms such as the steepest descent are 
inefficient. We derive a linearized algorithm to find the solution. 

4.1.2 Setting and constraints 
Photometric stereo 

As reviewed in Chapter 2, an image, which a collection of d pixels {hi,i = 
1, ...,d} that follow a Lambertian imaging model with a varying albedo field, 
can be written as 

hdxl = T^x3 S3xl- (4.1) 

In the above and for time being, we do not consider the shadow pixels and 
will deal with them later on. The index i corresponds to a spatial position 
X = {x, y). We will interchange both notations. For instance, we might also 
use X = 1, ...,d. 

In the case of photometric stereo, we have n images of the same object, say 
{hi, h2 , . . . , h„}, observed at a fixed pose illuminated by n different lighting 
sources, forming an object-specific ensemble. Simple algebraic manipulation 
gives: 

Hrfxn = [=>r=l h«l = T[=^"=i Sj] = Trfx3 Ssxn , (4.2) 

where H is the observation matrix and S = [si, S2, . . . , s„] encodes the infor­
mation on the illuminants. Hence photometric stereo is rank-3 constrained. 



Generalized Photometric Stereo 75 

Note that when shadow pixels are present, the above factorization is still valid 
if we are able to exclude them successfully. 

The rank-3 constraint implies that, given at least three exemplar images for 
one object under three different independent illuminations, we can determine 
the identity of a new probe image by checking if it lies in the linear span of 
the three exemplar images. This requires capturing at least three images for 
one object in the gallery set, which might be prohibitive in practical scenarios. 
Note that in this recognition setting, there is no need for the training set; in 
other words, the training set is equivalent to the gallery set. 

A typical recognition setting [60], however, assumes no identity overlap 
between the gallery set and the training set and often stores only one exemplar 
image for each object in the gallery set. However, the training set can have 
multiple images for one object. In order to generalize from the training set 
to the gallery and probe sets, we note that all images in the training, gallery, 
and probe sets belong to the same face class, which naturally leads to the rank 
constraint. 

The rank constraint 

The rank constraint is motivated by subspace analysis, which assumes that 
an image h is linearly spanned by basis images hj. 

va 

h = E / ' l i i - (4-3) 

Typically, the basis images are learned by PCA [64] using the images not 
necessarily illuminated from the same light source. This forces the learned 
basis images to cover variations in both identity and illumination, making it 
ineffective. 

We impose the restriction of the same light source on the training images. 
As a consequence, the basis images can be expressed as 

hi = TiS. (4.4) 

because the basis image is a linear combination of the training images in PCA. 
Therefore, Eq. (4.3) becomes 

m m 

h d x l = T s = ^ / j h i = ^ / i T i S = Wrfx3m[fmxl ® S3xl ] , (4.5) 
1=1 i=l 

where W = [=>^i Tj], f = [JJ-^i / , ] , and 0 denotes the Kronecker (tensor) 
product. This leads to a two-factor bilinear analysis [214]. 

Because s is a free parameter, Eq. (4.5) is equivalent to imposing a rank 
constraint on the T matrix: any T matrix is a linear combination of some basis 
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matrices {Tj, T2, . . . , 1^} coming from some m basis objects. 

Trfx3 = E / j T i - (4-6) 
i=i 

Since the W matrix encodes all albedos and surface normals for a class of objects, 
we call it a class-specific albedo-shape matrix. 

With the availability of n images {hi, h2 , . . . , h„} for different objects, ob­
served at a fixed pose illuminated by n different lighting sources, forming a 
class-specific ensemble, we have 

Hdx« = K L l hi] = W[=^f^j (f i ® Si)] = Wrfx3mK3™x„, (4.7) 

where K = [=»f=i (f̂  ® Sj)]. It is a rank-3m problem, which combines the 
rank of 3 for the illumination and the rank of TO for the identity. 

One immediate goal is to estimate W and K from the observation matrix H. 
The first step is to invoke an SVD factorization, H = UAV , and retain the top 
3TO components as H = ^•im^'im^lwr"^ ^' where W = Us^ and K = K-i^vl^. 
Thus, we can recover W and K up to an 3TO X 3m invertible matrix R with W = WR, 
K = R~^K. Additional constraints are required to determine the R matrix. We 
will use the integrability and face symmetry constraints, both related to W. In 
addition, the matrix K takes a special structure, i.e., each column vector of K is 
a tensor product between two vectors. 

The integrability constraint 
One common constraint used in SFS research is the integrability of the surface 

[149, 213, 168, 75]. Suppose that the surface function is 2; = z(x) with x = 
dz d dz 

; dy dy dx' 
{x,y), we must have g|f^ = ^ | | - If given the unit surface normal vector 

ii(x) = [a(x)j ^(x)j C(x)] at pixel x, the integrability constraint requires that 

(4.8) 
d ^(x) _ d a(x) 

dx c(x) dy C(x)' 

Equivalently, with a(x) defined as an integrability constraint term, 

«(x) = C ( x ) ^ - 6 ( x ) - ^ + a ( x ) ^ ^ - c ( x ) ^ ^ = 0. (4.9) 

If given theproductofthealbedoandthesurfacenormalt(x) = [a(x);''(x)iC(x)] 
with a(x) = P(x)a(x)> 6{x) = P(x)^(x)> and C(x) = P(x)C(x), Eq. (4.9) still 
holds with a, b, and c replaced by a, b, and c, respectively. Practical algo­
rithms approximate the partial derivatives by forward or backward differences 
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or other differences with the inherent smoothness assumption. Hence, the ap­
proximations based on t(x) are very rough especially at places where abrupt 
albedo variations exist (e.g. the boundaries of eyes, iris, eyebrow, etc.) since 
the smoothness assumption is seriously violated. We proceed to use n(x) in 
order to remove this effect. 

The face symmetry constraint 
For a face image in a frontal view, one natural constraint is its symmetry 

about the central j/-axis [93, 162]: 

P(x,y) P(—x,y)\ '-^{x,y) ~^(—x,y)) ^{x,y) "(—a;,?y)) ^'(x,y) C'{—x,rj)i 

(4.10) 
which is equivalent to, using x = {x, y) and its symmetric point x = (—x, y), 

a(x) = -«(x); ^(x) = &(x); C(x) = C(x), (4.11) 

and is further equivalent to 

f^h = {«(x) + a(x)}^ + { (̂x) - &(x)}^ + {c(x) - C(x)}^ = 0. (4.12) 

We call /3(x) as the symmetry constraint term. 
If a face image in a non-frontal view, such a symmetry still exists but the 

coordinate system should be modified to take into account the view change. 

4.1.3 Separating illumination 
In this section, we temporarily assume that the class-specific albedo-shape 

matrix W is available and solve the problem of separating illumation, v.i.z., for 
an arbitrary image h, find the illuminant vector s and the coefficient f. For 
convenience in performing tasks such as recognition, we also normalize the 
solution f to the same range. 

The rank constraint gives rise to the basic equation h = W (f (g) s). So, we 
convert the separation task to a minimization task of finding f and s to minimize 
the least square (LS) cost, i.e., 

min£:(f,s) = j | h -W(f (g)s)f, (4.13) 

Note that f and s can be recovered only up to a non-zero scalar; one can always 
multiply f by a non-zero scalar and divide s by the same scalar. Therefore, 
without loss of generality, we can simply pose an additional constraint: 1' f = 
1, where Imxi is a vector of 1 's. 

One way to solve this is indicated in [84]. It is a two-step algorithm. First, k 
is approximated by k = W ĥ, where [.]t is the Moore-Penrose pseudo-inverse. 
Then k = f ^ s is used to solve for f and s, again using the LS approximation. 
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i.e. finding f and s such that the cost ||k — f (8) s|p is minimized. However, as 
pointed out in [84], the above algorithm is not robust since two approximations 
are involved. 

Before we proceed to the actual separation algorithm, note that shadows in 
principle increase the rank (for the illumination only) to infinity. However, 
if those pixels are successfully excluded in our calculations, the rank for the 
illumination still remains to be 3 and the overall rank is 3m. 

In view of the above and considering the normalization requirement, we 
modify the optimization problem as 

[Problem A] rnin£:(f, s) = ||TO (h~ W (f O s ) ) f + (l''"f - 1 ) ^ (4.14) 

where r^x i indicates the inclusion or exclusion of the pixels of the image h and 
o denotes the Hadamard (or element-wise) product. For a pixel x, r(x) = 1 
means to include the pixel x and r(x) = 0 means to exclude the pixel x. 

Using the fact that Eq. (4.5) provides a series of sub-equations, which is 
linear in f if s is fixed and in s if f is fixed, we can design a simple iterative 
algorithm to solve the Problem A. Each iteration of the algorithm has three 
steps. 

Step I: We solve for the LS estimate off, given s and r . 

t 
; Wf = K™=i (T,s)]rfx„. (4.15) T 

1 

T o h 
1 

• Step 2: We solve for the LS estimate of s, given f and r: 

s = W^(roh), (4.16) 

where Ws can be similarly defined. 

• Step 3: Given f and s, we update T as follows: 

T = [ |h.-W(f (8)s)| < r ; ] , (4.17) 

where 77 is a pre-defined threshold. We typically set ry = 10. The above is 
a Matlab operation which performs an element-wise comparison. 

Note that in Eq. (4.15) and Eq. (4.16), additional saving in computation is 
possible. We can form dimension-reduced matrices Ŵ  and Wg and vector h' 
and apply the primed version in Eq. (4.15) and Eq. (4.16). The matrices Ŵ  
and w's and vector h! are formed from Wf, Ws, and h, respectively, by discarding 
those rows corresponding to the excluded pixels. 
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The initial condition of s can be arbitrary. But, for fast convergence, we need 
good initial values. In our implementation, we estimate s using the algorithm 
presented in [170]. To initialize r, we employ heuristics to distinguish pixels 
in shadows: their intensities are close to zero. In practice, we set those pixels 
whose intensities are smaller than a certain threshold as missing values. In 
addition, we also set those pixels whose intensities are above a certain threshold 
as missing values to remove pixels possibly in a specular region. This is only 
done for initialization as we update r during iterations. This way of initializing 
r is very important for deriving the final solution; an initialize of r = 0 always 
yields a zero cost fiinction thus one has to avoid this attraction. We empirically 
found that our current way of initialization is very robust. 

To test the stability of our algorithm, we perturb the initial conditions and 
find that our algorithm is very stable. It always reaches the same solution (up to 
the convergence error) regardless of initial conditions and generates a smaller 
residual than the algorithm in [84]. 

4.1.4 Recovering class-specific albedos and surface normals 
The recovery task is to find from the observation matrix H the class-specific 

albedo-shape matrix W (or equivalently R), which satisfies both the integrability 
and symmetry constraints, as well as the matrices F and S. We decompose R as 

R3mx3m = F a l j ^ b l ) ^cl i ^al^ ^(,2,1^2, • • • , Tam,^ ̂ bim ^am\ 

and treat the column vectors {raj, r(,j,rc,; j = 1, ...,m} as our computational 
'units'. We also decompose the W matrix that comes from SVD as W = [-U-x=i 

W(x)] where W(x) (^ = 1)2, •• • ,(i)isa3mx 1 vectorandwL) is set to be the row 
corresponding to the pixel X in W. W= [JJ.x=i [=^jLi [ô X̂x)) ^i(x)>Cj(x)]]] = WR, 
it is easy to show that 

aj(x) = W(x)raj, 6j(x) = W(x)r6j, Cj(x) = W(x)''ci; j = 1 , . . . , m. (4.18) 

As mentioned in Section 4.1.3, we must take into account attached and cast 
shadows. After setting them as missing values, we perform SVD with missing 
values [232] to find W. Other analyses dealing with missing value are available 
in [259, 255, 217]. 

In view of the above, we formulate the following optimization problem: 
Minimize over R3mx3m,Fmxn = [fi,f2, • • • ,fn],andS3x„ = [si, S2, . . . , s„] 
the cost fimction £ defined as 

^ n d 

£:(R,F,S) = - ^ ^ r i ( x ) { / i i ( x ) - w ( x ) T R ( f i ® s , ; ) } 2 
^ i=\ X=l 
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\ m d \ m. d 

+YEE{«.(x)}^+yI:I:u%)}^ 
^ i = l x = l ^ i = i x = l 

= fo(R,F,S) + Aifi(R) + A2f2{R), (4.19) 

where r̂  (x) is an indicator function which takes the value one if the pixel x 
of the image hj is not in shadow and zero otherwise, c(j(x) is the integrability 
constraint term based only on surface normals as defined in Eq. (4.9), and /3j(x) 
is the symmetry constraint term as defined in Eq. (4.12). Alternatively, one 
could directly minimize the cost function over W, F, and S. This is in principle 
possible but numerically difficult as the number of unknowns depends on the 
image size, which can be quite large in practice. 

As shown in [146], the recovered surface normal is up to a generalized bas-
relief (GBR) ambiguity. To avoid trivial solutions such as a planar object, we 
normalize the matrix R by setting 1|R||2 = 1 where ||.||2 is a matrix norm. 
In this way, the surface normals we are recovering are versions up to a GBR 
ambiguity with respect to the true physical surface normals [75]. However, 
they are enough for tasks such as face recognition under illumination variation. 
Another ambiguity between tj and ŝ  is a nonzero scale, which can be removing 

by normalizing f to same range: f ' 1 = 1, where l^x i is a vector of I's. 
To summarize, we perform the following task: 

min f(R,F,S) subject to ||R||2 = 1,F"'"I = 1. (4.20) 
R,F,S 

An iterative algorithm can be designed to solve Eq. (4.20). While solving 
for F and S with R fixed is quite easy, solving for R with F and S is very 
difficult because the integrability constraint terms involve partial derivatives 
of the surface normals that are nonlinear in R. Algorithms based on steepest 
descent are inefficient. We propose a linearized algorithm to solve for R, which 
is detailed in [95]. 

We now illustrate how to update F — [̂ i? 2̂? • • • •> ^n\-> ^ — [̂ i? ̂ 2) •.. ? ^n]? 
and r = [TI, r 2 , . . . , r„] with R fixed (or W fixed). First note that F, S, and T 
are only involved in the term £Q. Moreover, f», sj and TJ are related to only 
the image hj. This becomes the same as the illumination separation problem 
defined in Section 4.1.3. The proposed algorithm is also iterative in nature. 
After running one iterative step to obtain the updated F, S, and r, we update R 
again and this process is continued on until convergence. 

Again, the same issue of initializing T exists, that is, an initialize of r = 0 
always yields a zero cost function and one has to avoid this situation. We 
use the same heuristics to initialize TJ that corresponds to image i. Another 
issue is related to the integrability constraint. It should be noted that the inte­
grability constraint is introduced only for regularizing the solution. We make 
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no claim (and there is no guarantee) that the recovered matrices {T ;̂ j = 
1,2,... , m} must satisfy the integrabihty constraint. Further even if the ma­
trices {TJ; j = 1,2,... ,m} satisfy the integrabihty constraint, their Hnear 
combination I] /Li /jTj does not. 

To demonstrate how the algorithm works, we design the following scenario 
with m = 2 so that the rank of interest is 2 x 3 = 6. To defeat the photometric 
stereo algorithm, which requires one object illuminated by at least three sources, 
and the bilinear analysis, which requires two fixed objects illuminated by at 
least three same lighting sources, we construct eight images by taking random 
linear combinations of two basis objects illuminated by eight different lighting 
sources. Figure 4.2 displays the two basis objects under the same set of eight 
illuminations and the synthesized images. The recovered class-specific albedo-
shape matrix is also presented in Figure 4.2, which clearly shows the two basis 
objects. The quality of reconstruction is quite good except around the nose 
region. The reason might be that the two basis objects have quite distinct 
noses so that the nose part of their linear combinations is not visually good 
(for example the last image in the third row), which propagates to the recovery 
resuhs of albedos and surface normals from these combination images. Our 
algorithm usually converges within 100 iterations. 

^fgf-^ 

Figure 4.2. Row 1; The first basis object under eight different illuminations. Row 2: The 
second basis object under the same set of eight different illuminations. Row 3: Eight images 
(constructed by random linear combinations of two basis objects) illuminated by eight different 
lighting sources. Row 4: Recovered class-specific albedo-shape matrix W showing the product 
of varying albedos and surface normals of two basis objects (i.e. the three columns of Ti and 
T2) using the generalized photometric stereo algorithm. 

One notes that the special case TO = 1 of our algorithm can be readily ap­
plied to photometric stereo (with the symmetry constraint removed) to robustly 
recover the albedos and surface normals for one object. 
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Figure 4.3. Right: Flash distribution in the PIE database. For illustrative purposes, we move 
their positions on a unit sphere as only the illuminant directions matter, 'o ' means the ground 
truth and 'x' the estimated values. 

4.2 Illumination-Invariant Face Recognition in the 
Presence of a Single Light Source 

This section deals witii illumination-invariant face recognition in the pres­
ence of a single light source, which serves as a main evaluation tool for the 
generalized photometric stereo algorithm. 

We define in Section 4.2.1 recognition setting and report in Section 4.2.2 
face recognition results using the PIE database. 

4.2.1 Recognition setting 
As mentioned earlier, we study an extreme recognition setting with the fol­

lowing features: there is no identity overlap between the training set and the 
gallery and probe sets; only one image per object is stored in the gallery set; 
the lighting conditions for the training, gallery and probe sets are completely 
unknown. 

Our recognition strategy is as follows. 

• Learn W from the training set using the recovery algorithm described in 
Section 4.1.4 or construct W if we have 3D face models available. 

• With W given, learn the identity signature f s for both the gallery and probe 
sets using the recovery algorithm that solves the Problem A in Eq. (4.14) as 
described in Section 4.1.3, assuming no knowledge of illumination direc­
tions. 
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• Perform recognition using the nearest correlation coefficient. Suppose that 
a gallery image g has its signature ig and a probe image p has its signature 
f p, their correlation coefficient is defined as 

cc{p,g) = ^ E d ^ = , (4.21) 
y'(fp,fp){fg,f,) 

where (x, y) is an inner-product such as (x, y) = x ' Ey with E learned or 
given. We use E as an identity matrix. 

Compared to the approached reviewed in Chapter 2, the proposed recognition 
scheme possesses the following properties: (i) It is able to recognize new objects 
not present in the training set; (ii) It is able to handle new lighting conditions not 
present in the training set; and (iii) No explicit 3D model and no prior knowledge 
about illumination conditions are needed. In other words, we combine the 
advantages of the subspace learning and reflectance model-based methods. 

We use the PIE database [85] in our experiment. In particular, we use the 
'ilium' part of the PIE database that is close to the Lambertian model as in [77] 
while the 'light' part that includes an ambient light is used in [72]). Figure 4.3 
shows the distribution of all 21 flashes used in PIE and their estimated positions 
using our algorithm. Since the flashes are almost symmetrically distributed 
about the head position, we only use 12 of them distributed on the right half of 
the unit sphere in Figure 4.3. More specifically, the flashes we used are /os, 
/o9, fn-fn, and /20-/22- In total, we used 68 x 12 = 816 images in a fixed 
view as there are 68 subjects in the PIE database. Figure 4.4 displays one PIE 
object under the selected 12 illuminants. 

Registration is performed by aligning the eyes and mouth to desired positions. 
No flow computation is carried on for further alignment as opposed to [72] . 
After the pre-processing step, the cropped out face image is of size 50 by 50, i.e. 
d = 2500. Also, we only study gray images by taking the average of the red, 
green, and blue channels of their color versions. We use all 68 images under 
one illumination to form a gallery set and under another illumination to form 
a probe set. The training set is taken from sources other than the PIE dataset. 
Thus, we have 12 x 11 = 132 tests, with each test giving rise to a recognition 
score. 

4.2.2 Experiments and results 
We assume that all the images have been captured in a frontal view, but we 

do not assume that the directions and intensities of the illuminants are known. 

Yale training set 

The training set is first taken as the Yale's illumination database [75]. There 
are only 10 subjects (i.e. m = 10) in this database and each subject has 64 
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Figure 4.4. The top row displays one PIE object under the selected 12 illuminants (from left to 
right, /o8, /o9, / i i - / i 7 , and /20-/22) and the bottom row one Yale object under 9 lights (most 
frontal lights) used in the training set. 
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Table 4.1. Recognition rate obtained by the generalized photometric stereo approach using the 
Yale's database as the training set. 'F' means 100 and '/„.„' means flash no. nn. 

images in frontal view illuminated by 64 different lights. We pick out images 
under 9 lights (mostly frontal) in order to cover up to second-order harmonic 
components [144]. Figure 4.3 shows one Yale object under r = 9 lights. 

Table 4.1 lists the recognition rates for the PIE database using the Yale's 
database as the training set. Even with m = 10, we obtain quite good results, 
especially when the gallery and probe sets are close in terms of their flash 
positions. When the flashes of the gallery and probe sets become separated, the 
recognition rate decreases. The worst performance is with the gallery set at /og 
and the probe set at /17, two most separated flashes. In general, using images 
under frontal or near-frontal illuminants (e.g. /09, /12, and /21) as gallery sets 
produces good results. 

For comparison, we also implemented the 'Eigenface' approach (discarding 
the first 3 components) and the 'Fisherface' approach by training the subspace 
projection vectors from the same training set. The recognition rates are pre-
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Table 4.2. Recognition rate obtained by the 'Eigenface' approach discarding the first 3 com­
ponents using the Yale's database as the training set, 'F' mean 100 and ' / „ „ ' means flash no. 
nn. 
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Table 4.3. Recognition rate obtained by the 'Fisherface' approach using the Yale's database as 
the training set. ' F ' mean 100 and ' /nn ' means flash no. nn. 

sented in Tables 4.2 and 4.3. The 'Fisherface' approach outperforms the 'Eigen­
face' approach, but both perform worse than our approach. On the average, the 
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Table 4.4. Recognition rate obtained by the generalized photometric stereo approach using the 
Yale's database (the left number in each cell) and the Vetter's database (the right number in each 
cell) as the training set. ' F ' means 100 and ' / ,m' means flash no. nn. 

proposed generalized photometric stereo approach is 10% better than the 'Fish-
erface' approach. This highlights the benefit of decoupling the illumination 
variation. 

Vetter training set 

Generalization capacity with m = 10 is rather restrictive. We now increase 
m from 10 to 100 by using Vetter's 3D face database [72]. As this is a 3D 
database, we actually have W available. However, we believe that using a training 
set of TO = 100 from other sources can yield similar performances. Table 4.4 
tabulates the recognition rates obtained by the proposed algorithm. Significant 
improvements have been achieved by increasing m. This seems to suggest that 
a moderate sample size of 100 is enough to span the entire face space under a 
fixed view. The comparison between our approach with Blanz and Vetter [72] 
is highlighted in Section 4.3.2. 

lUuminant estimation 

In the above process, we also achieve illuminant estimation. Figure 4.3 
shows the estimated illuminant directions. It is quite accurate for estimation of 
directions of flashes near the frontal pose. But when the flashes are significantly 
off-frontal, accuracy slightly goes down. 
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4.3 Illumination-Invariant Face Recognition in the 
Presence of Multiple Light Sources 

This section deals with face recognition in the presence of multiple light 
sources. It turns out that the nonlinearity in the Lambert's law is very important 
to this task. We extend our earlier analysis to directly incorporate the attached 
shadows rather than excluding them for computation. 

4.3.1 How important is the nonlinearity in the Lambert's 
law? 

No 111)11- S)iiidiiwpix(;l\i|;iiiin::l Wi(}H»'ii-!iiif;ini) 

; • • . • " 1 : 

s=|n.74. 0.59. -4Ui)i: 

.=I().52.fl7:.-0.45r s=10.76,«.55.-0.3(>|- s=i0.76.0 55.-fl,3ill-

Figure 4.5. The error surfaces for the estimation of the light source direction given a face 
image of Icnown shape and albedo. The three plots correspond to the three approaches described 
in the text. The lower the error is for a particular illumination direction, the darker the error 
sphere looks at the point corresponding to that direction. The true and estimated values of the 
illumination direction are listed along with the plots. 

In general, objects like faces do not have all the surface points facing the 
illumination source which leads to the formation of attached shadows. The cast 
and attached shadows are often ignored from the analysis to keep the subspace 
of the observed images in a three [161] or with the addition of an ambient 
component [168], four dimensional linear subspace. This is also true for the 
proposed generalized photometric stereo algorithm. Therefore, these generative 
approaches either ignore this non-linearity completely or try to somehow ignore 
the shadow pixels. Here we present a simple illustration to highlight the role 
attached shadows can play. 

Suppose the goal is to estimate the illumination source from a single face 
image given the shape and albedo of the face. We explore three approaches for 
this task: the first approach ignores the non-linearity completely, the second 
one uses the linear rule but ignores the shadow pixels and the last one uses 
the Lambert's Law in its pure form. The accuracy of the global minimum and 
its ambiguity on the error surface is taken as the criterion for the goodness of 
the method. The analytical expressions for the error fianction using the three 
options can be written as : 

Completely linear: e{s) =^\\ h - pu^ s f; (4.22) 
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Shadow pixels ignored: £{s) =|| r o (h ~ pii"'"s) |p; (4.23) 

Non-linear rule: £:(s) =|| h - max(pn"'"s, 0) f . (4.24) 

Clearly, the linear method penalizes the correct illumination at the shadow 
pixels by having non-zero error values for those pixels. On the other hand, 
when shadows are ignored, the illuminations which produce wrong values for 
the shadow pixels do not get penalized there. As the set of all possible normals 
lies on the surface of a unit sphere, we use a sphere to display the computed 
error functions. Figure 4.5 shows the error surfaces for the three methods for 
a given face image. The lower the error is for a hypothesized illumination 
direction s, the darker the surface looks at the corresponding point on the 
sphere. The global minimum is far from the true value using the first approach 
but is correct up to a discretization error for the second and third approaches. 
In fact, the second and third methods will always produce the same global 
minimum (assuming the correct values of r are set), but the global minimum will 
always be less ambiguous in the third case because several wrong hypothesized 
illumination directions do not get penalized enough in the second approach due 
to the exclusion of the shadow pixels (Figure 4.5). 

The case of multiple light sources 
The above analysis implicitly assumes that there is only one distant light 

source illuminating the face. Though the assumption is valid for datasets like 
PIE, it does not hold for most realistic scenarios. We now explore the impact of 
using the linear Lambert's law for images illuminated by multiple light sources. 
Using the linear Lambert's law, an image illuminated by k different light sources 
can be represented as: 

k k 

yy = Y^ pT^Si = pn^ 5Z Si = pT^s*, (4.25) 

where s* = X îUi ^i- This shows that under the linear assumption, multiple 
light sources can be replaced by a suitably placed single light source without 
having any effect on the image. This is a bit counter-intuitive as can be seen in 
a simple two-source scenario: 

Now if s i = —S2 

pn si -f pn S2. (4.26) 

h = pn"'"(si - S2) = 0. (4.27) 

Thus the linear assumption can make the effect of light sources interfere in a 
destructive manner and give strange outcomes. Please note that the negativity 
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comes because of the direction and not because of the intensity of the light 
source. Quite clearly, the harm done by the linearity assumption is proportional 
to the angle subtended by the light sources at the surface. 

Though the above discussion concludes that the Lambert's law in its pure 
form is better suited for illumination estimation than the other variants, it is 
only of academic interest if inclusion of the non-linearity does not improve the 
recognition results. The following section proposes a variant of the generalized 
photometric approach taking the non-linearity into account. The improvement 
in the recognition accuracy highlights the importance of including the attached 
shadows in the analysis. 

4.3.2 Face recognition in the presence of a single light 
source (revisited) 
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Tal>le 4.5. Recognition results on the PIE dataset. fi denotes images taken with a particular 
flash ON as labeled in PIE. Each (i, j ) "" entry in the table shows the recognition rate obtained 
with the images from fj as gallery while from / , as probe. 

We here extend the generalized photometric stereo approach to directly in­
clude attached shadows. Our main focus here is to highlight the importance of 
the non-linearity in the Lambert's law and not generalized photometric stereo. 
Therefore, we generate the shape-albedo matrix W using Vetter's 3D data for all 
our experiments. 

The key derivation is Eq. (4.5), where the attached shadows are not con­
sidered. ' To take into account the inherent hard non-linearity present in the 
Lambert's law, we let ĥ  == max(TjS, 0) in Eq. (4.5) instead of ĥ  = T^s. Eq. 
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(4.5) can then be written as 

an m 

hrfxi=X]/ ,h» = X^/imax(T,s,0). (4.28) 
i=l i=l 

Therefore, given shape-albedo matrix W = [Ti, T2, . . . , ! „ ] , the recovery of 
the identity vector f and illumination s can be posed as the following optimiza­
tion problem: 

m 

[Problem B] min£:(f, s) =|| h - V / i max(TiS,0) f + ( l ' f - l ) 2 (4.29) 

Please note that s is not a unit vector as it contains the intensity of the illumi­
nation source also. The main difference between Eq. (4.14) and Eq. (4.29) (or 
problems A and B) lies in that the shadow pixels are excluded in Eq. (4.14) but 
directly modeled in Eq. (4.29). 

The minimization of Eq. (4.29) is performed using an iterative approach, 
fixing f for optimizing £ w.r.t. s and fixing s for optimization w.r.t. f. In each 
iteration, f can be estimated by solving a linear least-squares (LS) problem but 
a non-linear LS solution is required to estimate s. The non-linear optimization 
is performed using the Isqnonlin flmction in MATLAB which is based on the 
interior-reflective Newton method. For most faces, the function value did not 
change much after 4-5 iterations. Therefore, the iterative optimization was 
always stopped after 5 iterations. The whole process took about 5-7 seconds 
per image on a normal desktop. 

We perform recognition experiments across illumination using the frontal 
faces from the PIE dataset, following the same setting as in Section 4.2.1. Ta­
ble 4.5 shows the recognition results obtained using this approach. Recognition 
is performed across illumination with images from one illumination condition 
from the PIE dataset forming the gallery set while images from another il­
lumination condition forming the probe set. Each gallery/probe set contains 
one frontal image per subject taken in the presence of a particular light source 
(there are 68 subjects in each gallery/probe). Each entry in the table shows 
the recognition rate achieved for one such choice of gallery and probe. Com­
pared with Table 4.4, the recognition performance with the inclusion of the 
non-linearity in the Lambert's law is almost always better or same. The overall 
average performance is up from 93% to 96%. The improvement is significant 
in cases involving difficult illumination conditions (with lots of shadows) like 
the flash fn in the PIE dataset. This shows that though the estimation becomes 
slightly more difficult, the recognition rate improves with the inclusion of the 
non-linearity. 

As an interesting comparison, Romdhani, Blanz, and Vetter [82] also re­
ported detailed recognition rates across the illumination variation using the 3D 
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morphable model. Using the 'light' part of the PIE database and only /12 as 
the gallery set, they recorded an average of 98% for color images. We matched 
their performance, an average of 98% using /12 as the gallery, using gray im­
ages. However, we used the 'ilium' part of the PIE database, which lacks the 
ambient light source. The effect is that in our experiments, images captured 
under extreme lights are almost completely dark, which makes the recognition 
of these images nearly impossible. On the other hand, the challenge in the 
'light' part is that people wear glasses. We believe that our performances can 
be boosted using the color images and finer alignment. In terms of computa­
tion, our approach is much faster than [82]. In principle, there are significant 
differences too. In [82] depths and texture maps of explicit 3D face models are 
used, while our image-based approach uses the concepts of albedo and surface 
normal and can recover the 3D models under the rank constraint. 

4.3.3 Recognition in the presence of multiple light sources 
One of the issues in handling multiple illumination case is the prior knowl­

edge of the number of light sources. In the absence of this knowledge, one can 
hypothesize several different cases and choose the one with minimum residual 
error. This can be done in a manner very similar to the approach described for 
the single illumination case with the following change in the objective fiinction: 

m fc 

f +{l''"f 1)^ (4.30) 

where k is the hypothesized number of light sources. The objective fiinction can 
be minimized repeatedly for different values of k and the one with minimum 
error can be taken as the correct hypothesis. Figure 4.6 shows the variation 
of the error with k, for an image illuminated by three different light sources. 
As can be seen, the error more or less stabilizes for fc > 3. Note that for the 
linear Lambert's law, such a curve will look more or less horizontal due to 
the equivalence of the single and multi-light source scenarios (Equation 4.25) 
under the linear assumption. 

Figure 4.6. The error obtained for different hypothesized number of light sources for the face 
image shown. The face was illuminated using 3 light sources. 
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Though one can use this approach by varying k, it is both inelegant and 
computationally intensive. In our approach, we avoid the extra computations 
by making the following assumption. We assume that an image of an arbitrarily 
illuminated face can be approximated by a linear combination of the images 
of the same face in the same pose, illuminated by nine different light sources 
placed at pre-selected positions. Lee et al. [79] show that this approximation 
is quite good for a wide range of illumination conditions. Hence, a face image 
can be written as 

9 

h = ^ aj max(TSj, 0), (4.31) 
j = i 

where {si, §2 , . . . , sg} are the pre-specified illumination directions. As pro­
posed in [79], we use the following directions for {si, S2, . . . , sg}: 

(j) = {0,49, -68,73,77, -84 , -84,82, -50}°; 

9 = {0,17,0, -18,37,47, -47 , -56 , -84}°. (4.32) 

Under this formulation, Eq. (4.30) changes to 

m. 9 

[Problem C] min£'(f ,a) =11 h — ^ / i ^ a ^ max(TiSj,0) | 
' 1=1 j = l 

(4.33) 
where f = [JJ-ĝ j fi] and agxi = [JJ-̂ =i oii]. This way one can potentially 
recover the illumination-free identity vector f without any prior knowledge of 
the number of light sources or any need to check different hypotheses for the 
same. 

( l ^ f ~ l ) ^ 

Figure 4.7. The per-gallery and per-probe average recognition rates on the 210 doubly-
illuminated scenarios generated from the PIE dataset. The blue curve shows the performance of 
the proposed approach while the red curve shows the recognition rates obtained using the linear 
single light source approach. 

Now the objective fimction is minimized with respect to f and a. This 
gives us the illumination-free identity vector f which is used for recognition. 
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The optimization is done in an iterative fasiiion by fixing one parameter and 
estimating the other and vice-versa. 

By defining ad x m matrix Wf as 

Wf 

it is easy to show that 

j = i -' 

f = 
' Wf " 

. J . 
t " h 1 

1 _ 
(4.34) 

where h^x i is the vectorized input face image, [.]̂  is the Moore-Penrose inverse, 
Imxi is the m-dimensional vector of ones, included to handle scale ambiguity 
between f and a. 

Looking carefully at the objective function (e.g. Eq. (4.33)), one can eas­
ily observe that a too can be estimated by solving a linear LS problem (as 
{si, S2,. . . sg} is known). This avoids the need for any nonlinear optimiza­
tion here. Recall that nonlinear LS was required to estimate s in the approach 
proposed for the single light source case. The expression for a can be written 
as: 

a = Vlh, (4.35) 

where, 

Wn =1 (Xl/imax(TiSj,0)) (4.36) 
dx9 

For most of the face images, the iterative optimization converged within 5-
6 iterations. As there is no non-linear optimization involved, it took just 2-3 
seconds to recover f and a from a given face image on a normal desktop. As 
the identity variable is estimated from an image by separating the effect of 
all the light sources in the form of a, it is used as the illumination-invariant 
representation for recognition across varying illumination. The correlation co­
efficient of the identity vectors is used as the similarity measure for recognition 
experiments. 

4.3.4 Experiments and results 
To begin with, we test this algorithm by running the same experiment as we 

do for the single light source approach. Though the PIE dataset is not suited to 
test the ability of this algorithm to handle arbitrarily illuminated images, a good 
performance here can be considered as a proof of concept. The overall average 
recognition rate for the experiment obtained using this algorithm is 95% which 
is higher than the generalized photometric stereo algorithm that gives 93%. 

Due to the unavailability of a standard dataset containing face images with 
multiple light sources ON at a time, we generate such data using the PIE and 
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Figure 4.8. The doubly-illuminated images of a subject from the Yale database. Each image 
is generated by adding 2 images of the same subject illuminated by different light sources. 

Yale datasets. Due to the controlled nature of the datasets, multiple images of 
a subject under different illuminations but same pose, are more or less aligned. 
If we ignore any camera gain, this allows us to add multiple images of a per­
son taken under different illuminations to get one with the effect of an image 
captured with multiple lights ON. The images generated this way look pretty 
realistic (see Figure 4.8). 

We report the results of experiments on the dataset created by adding im­
ages from two illumination conditions from PIE at a time. As PIE has 21 

different illumination scenarios, we get a total of ( ) = 210 different 

doubly-illuminated scenarios. Recognition was done across all 210 scenar­
ios by taking one as the gallery and another one as the probe at a time to get 
210 X 209 recognition scores. As it is difficult to show the recognition scores 
by drawing a 210 x 210 table, we show only the aggregated per-gallery and 
per-probe recognition rates (similar to the averages in Table 4.5) in Figure 4.7. 
The blue curve on the top shows the averages obtained by the proposed ap­
proach. For comparison, we show the recognition rates obtained on this dataset 
using the generalized photometric stereo algorithm that ignores shadow pixels 
under the single light source assumption (red curve). For ease of use, we will 
call this method as ISP-SLS (Ignores Shadow Pixels under Single Light Source 
Assumption). There exists a zero in the red curve because for one gallery/probe, 
the method ended up ignoring most of the pixels as shadows and thus was un­
able to recover the identity variable. The recognition rates obtained using the 
proposed approach are always better or same as compared to ISP-SLS. The 
increase in the recognition accuracy is more prominent for the cases where the 
two illumination sources combined to generate the doubly-illuminated scenario 
were far apart. This happens because the destructive interference of two light 
sources (due to the linearity assumption in ISP-SLS as described in Section 
4.3.1) increases with an increase in the angle between the two. 

We further test the algorithm by generating a similar doubly-illuminated 
data using Yale Face Database B [75]. Figure 4.9 shows the six challenging 
illumination conditions used to generate fifteen different scenarios (shown in 
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Figure 4.9. The 6 illumination conditions from the Yale face Database B used to generate the 
doubly-illuminated data. 

J 

• (a) (b) 

Figure 4,10. The reconstructed shapes of a face using (a) the ISP-SLS approach and (b) the 
proposed approach that talces into account nonlinearity. In each column, the three images display 
the three components of the reconstructed surface normals for the face. Columns 1 -5 correspond 
to the five illumination scenarios with the number of light sources varying from 1 -5, respectively. 
In (a), quite clearly, the quality of the reconstructed surface obtained by the ISP-SLS approach 
degrades as the number of light sources increase. In (b), we can see that there is hardly any 
difference in the reconstructed surfaces across various columns (which correspond to the 5 
different illuminations scenarios with the number of light sources ranging from 1-5). 

Figure 4.8) by pairing two at a time. The average recognition rate achieved 
on this difficult data (Figure 4.8 shows images of one subject under the 15 
illumination conditions) using our algorithm is 77%. This is up by more that 
25% compared to the accuracy achieved both by ISP-SLS method and the 
method which takes the non-linearity into account under the single light source 
assumption. 

All the above experiments implicitly assume that the faces in the gallery and 
probe are illuminated by the same number of light sources. Clearly, the pro­
posed algorithm does not impose any such restriction. Therefore, we perform 
another experiment to test the ability of the proposed approach to generalize 
across varying number of light sources. We generate five illumination scenarios 
using the PIE dataset with the number of light sources (added to create each 
scenario) ranging from 1-5. To avoid any bias, the combinations of the light 
sources are selected randomly from the 21 illumination sets in the PIE dataset. 
Recognition is performed across the five scenarios by considering one among 
them as the gallery and another one as the probe at a time. As before, each 
gallery/probe contains one image for each of the 68 subjects present in the PIE 
dataset. While the ISP-SLS approach performs poorly in this experiment, the 
proposed approach does a perfect job as shown in Table 4.6. Figure 4.10 shows 
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the reconstructed surfaces for a face illuminated in tiie presence of tlie five 
illumination scenarios using the two approaches. The quality of the reconstruc­
tions explains the difference in the recognition accuracy obtained using the two 
methods. To confirm the authenticity of the results, we perform another similar 
experiment with 10 different scenarios with the number of randomly selected 
light sources (added to generate the 10 scenarios) ranging from I-10. Here, 
the proposed approach achieves average recognition accuracy of 99.7% (The 
average recognition rate achieved by ISP-SLS here is 54%). 
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Table 4.6. Recognition results on the multiply-illuminated data generated from the PIE dataset. 
The various scenarios differ in the number of light sources. The illumination conditions from 
the PIE dataset randomly selected to generate each scenario is shown in curly braces. The first 
number in each entry of the table shows the recognition accuracy obtained using the proposed 
approach while the second number shows the performance of the ISP-SLS method. 



Chapter 5 

ILLUMINATING LIGHT FIELD 

State-of-the-art algorithms are not able to produce satisfactory recognition 
performance when confronted by pose and illumination variations. In general, 
pose variation is slightly more difficult to handle than illumination variation. 
The presence of both variations fiirther challenges the recognition algorithms. 

This chapter extends the generalized photometric stereo algorithm presented 
in Chapter 4 to handle pose variation. The way we handle pose variation 
is through the 'Eigen' light approach [76]. This unified approach is image-
based, in the sense that, in the training set, only 2D images are used and no 
explicit 3D models are needed. The unification is achieved by exploiting the 
fact that both approaches use a subspace model for identity. The 'Eigen' light 
field approach combines subspace modeling with light field and offers a pose-
invariant encoding of identity. The generalized photometric stereo algorithm 
combines the identity subspace with the illumination model and provides an 
illumination-invariant description. However, the 'Eigen' light field approach 
assumes a fixed illumination and cannot handle illumination variations, i.e., its 
pose-invariant identity encoding is not invariant to variations in illumination. 
The generalized photometric stereo algorithm assumes a fixed pose and cannot 
easily handle pose variations, i.e., its illumination-invariant identity description 
is not invariant to variations in pose. This motivates the integrated approach 
for handling both pose and illumination variations using an illumination- and 
pose-invariant identity signature. 

Section 5.1 presents the principle of the illuminating light field approach. 
It begins by describing in Section 5.1.1 the 'Eigen' light field approach [76] 
that performs FR vmder pose variations, and then introduces in Section 5.1.2 
our integrated approach. Section 5.1.3 presents algorithms for recovering the 
identity signature that is invariant to illumination and pose. Section 5.2 presents 
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our experimental results on the PIE database [85] and comparisons with other 
approaches. 

5.1 Principle of Illuminating Light Field 
5.1.1 Pose-invariant identity signature 

The light field measures the radiance in free space (free of occluding objects) 
as a 4D fianction of position and direction. An image is a 2D slice of the 4D 
light field. If the space is only 2D, the light field is then a 2D function. This is 
illustrated in Figure 5.1 (also see [76] for another illustration), where a camera 
conceptually moves along a circle, within which a square object with four 
differently colored sides resides. The 2D light field L is a fiinction of ^ and cj) 
as properly defined in Figure 5.1. The image of the 2D object is just a vertical 
line. If the camera is allowed to leave the circle, then a curve is traced out in the 
light field to form the image, i.e. the light field is accordingly sampled. Even 
though the light field for a 3D object is a 4D function, we still use the notation 
L{9, (p) for the sake of simplification. 

object 

Lt94)\'"''^?' 

e • +̂  / 

ne.'M 

Figure 5.1. This figure illustrates the 2D light-field of a 2D object (a square with four differently 
colored sides), which is placed within an circle. The angles 9 and (/> are used to relate the viewpoint 
with the radiance from the object. The right image shows the actual light field for the square 
object. 

Starting from the light fields {L„(6', (p); n = 1,..., A'̂ } of the training sam­
ples, the 'Eigen' light field approach conducts a PC A to find the eigenvectors 
{ei{9,<f>); i = 1, ...,m} which span a rank-m subspace. The'Eigen' light field 
[76] is again motivated by the similarity among the human faces. Using the 
fact [50, 64] that: If Y' Y has an eigenpair (A, v), then YY' has a correspond­
ing eigenpair (A, Yv), we know that ei{6, cp) is just a linear combination of the 
Ln{9,4>ys, i.e., there exist a^^'s such that 

ei{0,(j)) = ^ainLn{9,( (5.1) 
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For an arbitrary subject, its ligiit field L{9,0) lies in this rank-m subspace. 
In other words, there exists coefficients /^'s such that, V{^, cf), 

m 

He, <P) = Y. fM^^ <P) = e(^' <̂ )"̂ f. (5-2) 

where 6(0,0) == [^"^ ei{d,<P)Uy,i andf = [1^^=! Mmxi-
As mentioned earlier, to obtain an image h'̂  at a particular pose v (a collection 

of d pixels) one should sample the light field. Suppose that one pixel h^ is the 
point sample of the light field associated with the coordinate {0^, cj)"), i.e., 

W ^^Ue^^"). (5.3) 

The image h*̂  can be expressed as 

where {O'V, (t>1) is the corresponding coordinate in the light field for the pixel 
h\. Substituting Eqs. (5.2) into (5.4) yields 

h'̂  = [Cie(0r,</ 'D^]f = E''f, (5.5) 

whereE'^ = [de (0 ,^0n"^ ]dxm. 
Eq. (5.5) has an important implication: f is a pose-invariant identity sig­

nature because the pose information is encoded in E". This is summarized in 
Theorem 5.1. 

THEOREM 5.1 The identity signature f as derived in (5.5) is pose-invariant. 

Constructing a light field is a practically difficult task. However, if only 
some specific poses are of interest with each pose sampling a subset of the 
light field, we can only focus on the portion of the light field that is equivalent 
to the union of these subsets. Suppose that the K poses are of interest are 
{VI,...,VK} and the corresponding images at these poses are {\i"^,...,h'^^^} 
with h"'' expressed as in (5.4), the portion of the light field of focus is nothing 
but [Jlf^i [Jj-t,! L(6»"\ (/)"*)] ], which is a 'long' Kd x 1 vector obtained by 
stacking all the images at all these poses. The introduction of such a 'long' 
vector eases our computation: (i) If we are interested in a particular view v, 
we just simply take out those rows corresponding to this view, (ii) In this 
context, computing the 'Eigen' light field is equivalent to performing PC A on 
the ensemble consisting of a collection of such 'long' vectors. 

The concept of light field was introduced in the computer graphics literature 
[219]. A strict assumption is that the scene be static. While characterizing 
the appearances of one object at given views using the concept of light field 
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is legitimate, generalizing this to many objects is questionable since the lights 
fields belonging to different objects are not in correspondence, i.e. they are not 
shape-free in the terminology of [52, 87]. The mismatch in correspondence 
arises from differences in head sizes and locations in world coordinator system 
of different objects, and so on. Typically, correspondences between different 
objects are established using face normalization or registration is performed. 
Unfortunately, the normalization step ruins the static scene requirement in the 
light field theory. On the other hand, as argued in [52, 87], since the shape-free 
appearance is amenable for linear analysis, we can pursue PCA on the shape-
free vector L, similar to the 'Eigen' light field approach [76]. This point is 
illustrated in [78]. Following [78], we also use the term light field in a loose 
sense. 

5.1.2 Illumination- and pose-invariant identity signature 
As mentioned earlier and in [219], the underlying assumption about the 

concept of light is one of fixed illumination. We now consider the light fields 
formed under varying illumination, i.e., illuminating the light field. 

Clearly, the light field under a fixed illumination s, U{9,(j)), follows the 
Lambertian reflectance model: 

L-'(^,</.)=t(^,</))"''s, (5.6) 

where t{6, </>) is the product of the albedo and the surface normal at a proper 
pixel and does not depend on s. Combining Eq. (5.1) and Eq. (5.6) yields the 
'Eigen' light field ef (^, 0) imder the illumination s as, 

e? (^, </') = E «m*n(^' 't>)^^ = ^ei{0, 0)^s , (5.7) 
n 

wheretei(6', ()!)) = Y.n 
fl'm'tn(^! <?̂)- Eq. (5.2) then becomes 

L\e, 0) = [4^1 tei{e, 0)'''s]Tf = w(0, 0)(f ® s), (5.8) 

where W(0, (p) = [=>î x ^ei{S^ < )̂lix3m does not depend on s. This leads to a 
two-factor analysis [214]. 

A pixel K"'"^ under a pose v and an illumination s is a point sample of the 
light field L'>{6, <j)) at coordinate (^ , cj)''), i.e., 

and an image h"* under the pose v and illumination s, which traces a set of d 
samples of the light field under illumination s, is 

h- = [i^U Kl = Wti m, -ADKf ® s) = ^(0, ̂ ){f ® s), (5.10) 
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where ^(e,./)) = [JJ-f̂ j W(6'Ĵ  0JO]dx3m- Eq. (5.10) has an important im­
plication: The coefficient vector f provides an identity signature invariant to 
both pose and illumination because the pose is absorbed in W"(0, (f) and the 
illumination is absorbed in s. 

THEOREM 5.2 The identity signature f as derived in (5.10) is illumination 
and pose-invariant. 

The remaining questions are how to learn the basis matrix W(0,0) from a 
given training ensemble and how to compute the blending coefficient vector f 
as well as s for an arbitrary image h"*. The next section presents the algorithms 
in detail. 

5.1.3 Learning algorithms 
Learning the basis matrix W(0, cf)) 

Suppose that the training ensemble is given as {Ll^iO, (p); n = 1, ...N, s = 
1,...,S'}, where L'^{9,(j)) is the light field of the n"* training object under 
illumination s (a Kd x 1 vector as explained in Section 5.1.1). Learning W(0, (j>) 
(a Kd X mr matrix where m is the rank for the identity and r is the rank 
for the illumination) from the training ensemble is detailed in [214] and is 
further extended in [95] by imposing the integrability constraint. The main 
difference between [214] and [95] is the following: In [214], the recovered 
W(̂ , (p) minimizes the approximation error in the mean square sense and not 
necessarily satisfies the integrability constraint. In other words, the hypothetical 
base objects in W(0,0) is not integrable. In[95], the recovered W(0,0) minimizes 
the above approximation error as well as a cost fiinction invoked by violating 
the integrability constraint. As a consequence, [214] can only process the image 
ensemble consisting of different objects under the same set of illumination (e.g. 
the case considered here) while [95] can process the image ensemble consisting 
of different objects under completely different illumination. Here, we follow 
the approach in [214] to derive V{0,4)) for simplicity. The basic underlying 
principle is to use a two-fold SVD algorithm that is reviewed below. 

The following two matrices (A-type and B-type) are first constructed by 
grouping the 'long' vectors {L^{6,(j)); n = 1, ...A'', s = 1,...,5} in two 
ways: 

A = [ 4 l i [= f̂=i Ki0,<P)] ], B = [Uf=i K^=i L^(0,0)] ], (5.11) 

where A is a KNd x S matrix whose rows stack together the light fields of 
different identities under the same illumination and whose columns correspond 
to different illumination and B is a KSd x A'' matrix whose rows stack together 
the light fields under different illumination for the same identity and whose 
columns correspond to different identities. It is obvious that we can convert 
from an A-type matrix to B-type and vice versa. 
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We perform the SVD for the A matrix as A = U^Aj^vl and keep the top 

r rows of the column basis V^ for the illumination, denoted by S. We do a 
similar operation on the B matrix and keep the top m rows of the column basis 
Vg for the identities, denoted by F. Direct SVD of the A and B matrices is 
numerically inefficient or even prohibitive since they are extremely 'tall'. Also 
it is unnecessary to compute U and A as we are interested only in the V part of 
the SVD result. For computational savings, we observe that Vĵ  encodes the 
eigenvectors of A' A = V^ A? V i . Since the size of A' A is only SxS, computing 

its eigenvalues is numerically stable. Therefore, we simply first compute A A 
and then perform its 'Eigen' decomposition to find V .̂ Similarly, we can 
compute Vg. 

We now have the matrices S and F at our disposal. To find W(̂ , 4>), we first 
compute A' = AS , where A' is a KNd x r matrix. Notice that A' is still an 
A-type matrix, so we can convert A' to a B-type matrix B' following the strategy 
described in Eq. (5.11), where B' is a Krd x TV matrix. Thirdly, we compute 
W' = B'F ' , where W' is a Krd x m matrix. The rest is to group W' to form a 
Kd X mr matrix W. 

Recovering the blending coefficient vector f from an image 

Given W(6', (?!)) = [=>f=i [=^)=i Wti(6',</')] Ix^xmr, where Wi,(6',(|!)) denotes 
the ((i — 1) * r + j)*'^ column of the V{9,<p) matrix, computing f and s for 
an arbitrary image h''' utilizes Eq. (5.10) iteratively [95]. Notice that we need 
only the portion of W(̂ , <f>) corresponding to the pose v, denoted by \{"{9, cj)) = 

Iff is fixed, Eq. (5.10) is linear in s and its least square (LS) solution is 

s = K;=i([=^™iW^,.(0,</,)]f)]th-, (5.12) 

where [.]t is a matrix psuedo-inverse; if s is fixed, Eq. (5.10) is linear in f and 
its LS solution is 

1 (5.13) 

where 1 is a vector of I's. To obtain Eq. (5.13), we also impose f 1 = 1 
to normalize the solution to the same range, which facilitates the recognition 
task. We iterate this process until convergence. Meanwhile, we also take into 
account the pixels in shadows as in [95]. 
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Recovering the blending coefficient vector f from a group of images 

This iterative algorithm can be easily modified to handle a group of Q images 
{h"!*'!,..., h'̂ «*« } having the same f but different s's since multiple equations 
like (5.10) can be formulated. To be specific, we have the following iterative 
equations: 

Sg = K^=i([=^™iW:;(0,<^)]f)]V-'- q=l,2,...,Q, (5.14) 

[•^?=iK^i{K^=iWl](^,</')]s,) 

J 1 
. (5.15) 

In practice, using a group of images yields a robust estimate for f. 
The present of shadow pixels affects the learning algorithm. Handling shad­

ows can be performed in the same fashion as in Chapter 4. 

5,2 Face Recognition across Illumination and Poses 
5.2.1 PIE database and recognition setting 

We present the results on the 'ilium' subset of the PIE database [85]. This 
subset has 68 subjects under 21 illumination and 13 poses. Out of 21 illumina­
tion configuration, we select 12 denoted by 

F = {fie, / i 5 , / i 3 , /21, / i2 , / i i , /08, /()6, / lo , /18, /o4, /02} 

as in [77], which typically span the set of variations. Out of the 13 poses, we 
select 9 denoted by 

C = {C22,C02,C37,C()5,C27,C29,CU,C14,C34} 

, which cover from the left profile to the right profile. In total, we have 
68*12*9=7344 images. Figure 5.2 displays one PIE object under illumina­
tion and pose variations. 

Registration is performed by aligning the eyes and mouth to desired po­
sitions. No flow computation is carried on for further alignment. After the 
pre-processing step, the used face image is of size 48 by 40, i.e. d = 1920. 
Also, we only use gray scale images by taking the average of the red, green, 
and blue channels of their color versions. We believe that our recognition rates 
can be boosted by using color images and finer registrations. Figure 5.2 shows 
some examples of the face images actually used in recognition. 

We randomly divide the 68 subjects into two parts. The first 34 subjects are 
used in the training set and the remaining 34 subjects are used in the gallery and 
probe sets. It is guaranteed that there is no identity overlap between the training 
set and the gallery and probe sets. To form the light field, we use images at all 
available poses. Since the illumination model has generalization capability, we 
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C22 

C02 

C37 

Cos 

C27 

C29 

Cll 

Ci4 

C34 : 

/16 / l 5 / l 3 /2 I / l 2 / l l /08 /06 / lO /18 /04 /02 

Figure 5.2. Examples of the face images of one PIE object (used in the testing stage) under 
selected illumination and poses . 

can select a minimum of 3 illumination in the training set. In our experiments, 
the training set includes only 9 selected illumination to cover the second-order 
harmonic components [144]. Notice that this is not possible in the Fisher light 
field approach [77] that exhausts all illumination configurations. 

The images belonging to the remaining 34 subjects are used in the gallery 
and probe sets. The construction of the gallery and probe sets conforms to the 
following two scenarios: (A) We use all the 34 images under one illumination .Sj, 
and one pose Vp to form a gallery set and under the other illumination Sg and the 
other pose Vg to form a probe set. There are three cases of interest: same pose but 
different illumination, different pose but same illumination, and different pose 
and different illumination. We mainly concentrate on the third case with Sp 7̂  Sg 
andi;p 7̂  Vg. Also our approach reduces to the 'Eigen' light field approach [76] 
if Sp = Sg and to the generalized photometric stereo approach [95] if Up = Vg. 
Thus, we have (9 * 12)^ — (9 * 12) = 11,556 tests, with each test giving rise to 
a recognition score. (B) We divide C into three sets: C\ = {c22, C02, C37} (left-
profile views), C2 = {co5,C27,fi29} (frontal views), and C3 = {211,014,034} 
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(right-profile views) and F into 3 sets: Fi == {/ig, /15, /13, /21} (left lights), 
F2 = {/12, / i i , /08, foe} (frontal lights), and F3 = {/lo, / is , /o4, /02} (right 
lights). For each of the thirty four subjects, the gallery set contains all twelve 
images under the illumination in Fg and the poses in Cg and the probe set all 
twelve images under the illumination in Fp and the poses in Cg. We make 
sure that (Cp, Fp) j^ {Cg, Fg). Thus, we have (3 * 3)^ - (3 * 3) = 72 tests 
in this scenario that has no counterpart in the Fisher light field [77]. To make 
the recognition more difficult, we assume that the lighting conditions for the 
training, gallery and probe sets are completely unknown when recovering the 
identity signatures. 

The testing strategy is similar to that described in Chapter 4. 

1 Learn W from the training set using the bilinear learning algorithm [214, 95]. 
Figure 5.3 shows the W matrix obtained using the training set. 

2 With W given, learn the identity signature f 's (as well as s 's) for all gallery and 
probe elements (an element is an image in Scenario A and a group of images 
in Scenario B) using the iterative algorithms in Section 5.1.3. Learning f and 
s from one single image takes about 1 -2 seconds in a Matlab implementation. 
Figure 5.4 shows the reconstructed images using the learned f and s. 

3 Perform recognition using the nearest correlation coefficient. 
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Table 5.1. Recognition rates for all the probe sets with a fixed gallery set {c27,/ii). 

5.2.2 Recognition performance 
Scenario A 

Table 5.1 shows the recognition results for all probe sets with a fixed gallery 
set (c27,/ii), whose gallery images are in a frontal pose and under a frontal 
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illumination. Using this table we compare the three cases. The case of same 
pose but different illumination has an average rate 97% (i.e. the average of all 
11 cells on the row C27), the case of different pose but same illumination has 
an average rate 88% (i.e. the average of all 8 cells on the column / n ) , the 
case of different pose and different illumination has an average rate 70% (i.e. 
the average of all 88 cells excluding the row C27 and the column / n ) . This 
shows that illumination variation is easier to handle than pose illumination and 
variations in both pose and illumination are the most difficult to deal with. 
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Table 5.2. Average recognition rates for all the gallery sets. For each cell, say the gallery set 
at (Vfi = C27,Sg = /12), the average rate is tal<en over all probe sets {Vp,.Sp) where Vp ^ Vg 
and Sp / Sg. For example, the average rate for (c27,/ii) is the average of the rates in Table 5.1 
excluding the row C27 and the column / n . 

We now focus on the case of different pose and different illumination. For 
each gallery set, we average the recognition scores of all the probe sets with 
both pose and illumination different from the gallery set. Table 5.2 shows the 
average recognition rates for all the gallery sets. As an interesting comparison, 
the 'grand' average is 53% (the last cell in Table 5.2) while that of the Fisher 
light field approach [77] is 36%. In general, when the poses and illumination 
of the gallery and probe sets become far apart, the recognition rates decrease. 
The best gallery sets for recognition are those in frontal poses and under frontal 
illumination and the worst gallery sets are those in profile views and off-frontal 
illumination. As shown in Figures 1.4 and 5.2, the worst gallery sets consist of 
face images almost invisible (See for example the images (C22, fo2), (C34, /le), 
etc.), on which recognition can be hardly performed. 

Figure 5.5 presents the curves of the average recognition rates (i.e. the last 
columns and last rows of Tables 5.1 and 5.2) across poses and illumination. 
Clearly the effect of illumination variations is not as strong as due to pose 
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variations in the sense that the curves of average recognition rates across illu­
mination are flatter than those across poses. Figure 5.5 also shows the curves 
of the average recognition rates obtained based on the top 3 and top 5 matches. 
Using more matches increases the recognition rates significantly, which demon­
strates the efficiency of our recognition scheme. For comparison, Figure 5.5 
also plots the average rates obtained using the baseline PCA. These rates are 
well below ours. The 'grand' average is below 10% if the top 1 match is used. 
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Figure 5.3. The first nine columns of the learned W matrix. 

Scenario B 

This test scenario is designed for face recognition based on a group of images, 
which can be under different poses and different illumination. Table 5.3 lists 
the recognition rates, which are much higher than those in Tables 5.1 and 5.2. 
Also, similar observations can be made regarding the effects of illumination 
and pose variations. 

5.2.3 Comparison with the 3D morphable model 
The 3D morphable model (3DMM) [72] is the state-of-the-art approach to 

identify faces across illumination and poses. The proposed approach differs 
from the 3DMM approach mainly as follows: 
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C22 

C02 

Cos 

C27 

C29 

CU 

Ci4 

C34^ 

/16 / l 5 / l 3 /21 / l 2 / n /08 /06 / lO /18 /04 /02 

Figure 5.4. The reconstruction results of the object in Figure 5.2. Notice that only the i's and 
s's for the row C27 are used for reconstructing all the images. 

Gallery 

Probe 
CiFi 

Clf2 

C1F3 

C2F1 

C2F2 

C2F3 

C3F2 

C,,F2 

C3F3 

Average 

C-iFi 

. „ 

100 
85 
97 
97 
79 
59 
74 
88 
85 

C1F2 

100 

--
97 
94 
100 
82 
59 
85 
82 
88 

Cl f.3 

85 
100 

-
71 
85 
76 
68 
62 
62 
76 

C2F1 

100 
100 
88 

-
100 
97 
85 
91 
79 
93 

C2F2 

94 
100 
88 
100 

-
100 
76 
94 
79 
92 

02F3 

82 
85 
91 
85 
100 

-
71 
82 
94 
86 

C3F1 

62 
71 
76 
71 
76 
74 

-
100 
85 
77 

C3F2 

85 
82 
62 
85 
91 
88 
100 

-
100 
87 

03^3 

94 
94 
65 
76 
85 
91 
82 
100 

-
86 

Average 

88 
92 
82 
85 
92 
86 
75 
86 
84 
85 

Table 5.3. The recognition rates for test scenario B. 
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Figure 5.5. The average recognition rates across illumination (tlie top row) and across poses 
(the bottom row) for three cases. Case (a) shows the average recognition rate (averaging over 
all illumination/poses and all gallery sets) obtained by the proposed algorithm using the top n 
matches. Case (b) shows the average recognition rate (averaging over all illumination/poses for 
the gallery set (car, / i t ) only) obtained by the proposed algorithm using the top n matches. 
Case(c) shows the average recognition rate (averaging over all illumination/poses and all gallery 
sets) obtained by the 'Eigenface' algorithm using the top n matches. 

Model-based v.s. image-based. The 3DMM approach requires prior 3D 
models while the proposed approach that is image-based needs only 2D 
images. 

Linear assumptions are used in both approaches. Two major components 
in the 3DMM approach are 3D depth and texture, respectively, and two 
independent linear models are assumed in both components. The major 
component in the proposed approach is the product of the albedo and surface 
normal and a single linear model is assumed. As in the 3DMM approach, it 
seems that the dimensionality of the proposed model can be 'decomposed' 
as the product (or the addition) of the dimensionality of the surface normals 
and that of the albedo field. However, empirical analysis shows [94] that 
such a decomposition is not necessary and might overfit the problem, thereby 
indicating that a subspace of rather low dimensionality can be used. 

Handling illumination. The Lambertian model is used in the proposed 
algorithm and pixels in shadows and specular reflection regions are inferred 
and excluded for consideration. The 3DMM approach uses the standard 
Phong model to directly model diffuse and specular reflection on the face 
surface. 
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The 3DMM also takes into account inputs illuminated by colored lights using 
color transformation while the proposed approach only processes inputs 
illuminated by white lights. 

• Handling pose. The 3DMM approach can handle images at any pose, while 
the current implementation of the proposed approach can handle images 
sampled from a given set of poses. In order to handle arbitrary pose other 
than those listed in the given set, the system should incorporate a tool to 
render novel poses using given poses. 

In the proposed approach, pixels at different poses might correspond to the 
same point in the physical 3D model. In the 3D1VIM approach, one point is 
only represented once for all the poses since the 3D model is used. 

• Experiments Both the 3DMM and the proposed approaches conducted ex­
periments using the PIE database. However, different portions of the PIE 
database are used. The 3DMM approach worked on the 'lights' part, where 
an ambient light source is always present. The proposed approach worked 
on the 'ilium' part with no ambient light source. As a consequence, some 
images appear almost dark (refer to Figure 5.2) and there is little hope of 
performing correct recognition based on these extreme images, explaining 
the relatively low recognition rates compared with those produced by the 
3DMM approach. 

In terms of computational complexity, the proposed algorithm is more com­
putationally efficient than the 3DMM approach. The proposed fitting al­
gorithm, taking 1-2 seconds to process one input image using Matlab im­
plementation, is simply linear (rather bilinear) and has a unique minimum; 
while the 3DMM approach, taking 4.5 minutes to process one input image, 
invokes a gradient descent algorithm that does not guarantee a global min­
imum. Also, the proposed algorithm is able to handle face images of very 
small size. In the reported experiments, gray-level images are normalized 
to size of 48 X 40. The size of color images used in the 3DMM approach is 
unclear, but typically much larger. 



Chapter 6 

FACIAL AGING 

In this chapter, we focus on two research topics related to facial aging: age 
estimation and face recognition across aging progression. 

6.1 Age Estimation 
We attack the problem of age estimation using a general technique of image 

based regression (IBR). The problem of IBR is defined as follows: Given an 
image x, we are interested in inferring an entity y(x) that is associated with 
the image x. Since IBR is a general technique, the meaning of y(x) varies in 
different applications. Figure 6.1 illustrates three IBR tasks. For example, it 
could be a feature characterizing the image (e.g., the human age in the first 
problem A), a parameter related to the image (e.g., the position and anisotropic 
spread of the tumor in the second problem B), or other meaningful quantity 
(e.g., the location of the endocardial wall in the third problem C). 

(a) (b) (c) 

Figure 6.1. Three image based regression tasks: (a) Age estimation: (b) Tumor detection: and 
(c) Endocardial wall delineation. 

IBR is an emerging challenge in the vision literature. In the article of Wang 
et al. [227], support vector regression was employed to infer the shape de-
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formation parameter. In a recent work [207], Agarwal and Triggs used the 
relevance vector regression to estimate the 3D human pose from silhouettes. 
However, in the above two works, the inputs to the regressors are not images 
themselves, rather pre-processed entities, e.g., landmark locations in [227] and 
shape context descriptor in [207]. 

Numerous algorithms [9] have been proposed in the machine learning liter­
ature to attack the general regression problem. Chapter 2 briefly reviewed the 
data-driven regression techniques. However, it is often difficult or inefficient 
to directly apply them to vision applications due to the following challenges. 

Curse of dimensionality. The input (i.e. image data) is of very high dimen­
sion, which manifests the phenomenon commonly referred to as the curse of 
dimensionality. Ideally, in order to adequately represent the sample space, the 
number of required image samples should be exponential to the cardinality of 
the input space. However, in practice, the number of training samples is often 
extremely sparse, compared with the cardinality of the input space. 

Varying appearance. First, there are a lot of factors that affect the appearance 
of the foreground object of interest. Apart from the intrinsic differences among 
the objects, extrinsic factors include the camera system, imaging geometry, 
lighting conditions, makeup, etc. Second, the variation arises from the presence 
of background whose appearance varies too. The third variation is caused by 
alignment. The regression technique must either tolerate the alignment error (as 
in the problems A) or regress out the alignment parameter (as in the problems 
B and C). 

Multiple output. The output variable is also of high dimensional. Most 
regression approaches, such as SVR, can deal with the single-output regres­
sion problem very robustly. Extending them to the multiple-output setting is 
sometime nontrivial as in the case of SVR. A naive practice of decoupling 
a multiple-output problem to several isolated single-output tasks ignores the 
statistical dependence among different dimensions of the output variable. 

Storage and computation. Regression techniques such as NPR, KRR, and 
SVR are data-driven. There are two main disadvantages of the data-driven 
approaches: storage and computation. First, these techniques require storing a 
large amount of training data. In NPR and KRR, all training data are stored. 
In SVR, support vectors are stored. In our experiments, we found that a large 
number of support vectors, often 80%-100% of the training data, are kept. 
Because the training data are images, storing the training images can take a 
lot of memory space. Second, evaluating the data-driven regression function 
is slow because comparing the input image with the stored training images is 
time-consuming. 

To overcome the above challenges, we propose an IBR algorithm using boost­
ing methods [238, 240, 241, 254]. AdaBoosting is the state-of-the-art classi­
fication method. After its theoretic connection to forward stagewise additive 



Facial Aging 113 

modeling [241 ] was discovered, Friedman [242] used boosting as a greedy func­
tion approximation in a regression setting [242]. Multiple additive regression 
tree (MART) [9] was proposed as a boosting tree solution to a single-output 
regression problem. Duffy and Helmbold [238] also studied boosting methods 
for regression for a single-output setting. However, a multiple-output regres­
sion setting is rarely studied in the literature. In this chapter, we focus on this 
setting that takes images as inputs. Features of our approaches are: 

1 We formulate the multiple-output regression problem in such way that an 
analytic solution is allowed at each round of boosting. No decoupling of 
the output dimension is performed. Also, we decrease overfitting using an 
image-based regularization term that can be interpreted as prior knowledge. 
In addition, the regularization allows an analytic solution. 

2 We invoke the boosting framework to perform feature selection such that 
only relevant local features are preserved to conquer the variations in ap­
pearance. The use of decision stump as weak learner also makes it robust 
to appearance change. 

3 We use the Haar-like simple features [197] that can be rapidly computed. 
As a result, we do not store the training data. The knowledge of the training 
data is absorbed in the weighting coefficients and the selected feature set. 
Also, we evaluate the regression fimction almost in no time. 

4 We propose an efficient implementation to perform boosting training, which 
is usually a time-consuming process if a truly greedy feature selection pro­
cedure is used. In our implementation, we select the features incrementally 
over the dimension of the output variable. 

6.1.1 Regression using boosting method 
We now define the loss function and the regularization term that are ap­

propriate for our purpose of developing regression algorithm using boosting 
method. 

We focus on the L^ loss function. To allow a general treatment and to deal 
with the scaling effort of different data dimensions, we use the normalized error 
cost: 

L(y(x),g(x)) = [y(x) ~ g(x)]TA[y(x) ~ g{x)] 

= | |y (x) -g(x) | | i , (6.1) 

where Aqxi; is a normalization matrix that must be positive definite. 
Regularization exists in various forms. We focus on the following data-driven 

regularization term ||yU,—g(x)||g, where B̂  x ij is a normalization matrix that must 
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be positive deirnite. This regularization term has a subspace interpretation with 
/Li being the mean and B~^ being the covariance matrix. 

Hence, it boils down to the following cost function to be minimized. 

N N 

n — 1 n — 1 

TV TV 

= ^ | | r ( x „ ) | | i + A^l l s (x„ ) | | 2 
n—1 n~l 

= tr{ARR^} + AtrlBSs"*"} 

= ||R|li + A|!S||^, (6.2) 

where r(x) = y(x) — g(x) is the approximation error, s(x) = it — g(x) is the 
deviation error, and the matrices R̂ xAf and QqxN are, respectively, defined as 
follows R = [r(xi),r(x2),...,r(xAr)],S = [s(xi), s(x2), . . . , s(xAr)]. 

We now resort to the influential framework of boosting to derive an analytic 
solution. 

Boosting 

In boosting method for regression, the regression output function g(x) : 
TV^ —> Wi is assumed to take a linear form: 

T 

g(x) = Y. atht(x); ht(x) G H, (6.3) 
t=i 

where each ht(x) is a weak learner (or weaker function) and g(x) is a strong 
learner (or strong fimction). Further, it is assumed that a weak function h(x) : 
7̂ '̂  —> TZ'^ lies in a dictionary set or weak function set H. 

Boosting iteratively approximates the target function y(x) by adding one 
more weak fimction using the additive form: 

g'(x) = g(x) + ah(x). (6.4) 

At each round of boosting, we select the fimction h and its weight coefficient a 
that mostly decreases the cost fimction. In other words, the following problem 
is attacked. 

(Q;,ii)=arg min J(g + ah). (6.5) 

THEOREM 6.1 By adding a function ah{x) to the output function g(x) as in 
Eq. (6.4), the new cost function J{^) maximally decreases the cost function 
•J{9) by a factor of {\ - e'^{h)), with \e(h)\ < 1. 
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Proof: The cost function of J(g') is computed as 

N N 

JiE) = T.\\yM-g'M\\l + xJ2y-&M\\l 
N 

= Yl lly(^») -" S(xn) - ali(x„) \\l + 
n = l 

TV 

AX]ll/^-g(^»)-"llK)llB 
n=l 

iV AT 

= tr{A[R - aH] [R - aH]^} + Air{B[S - aU] [S - aH]"^} 

= (irjARR"'"} + AirJBSs''"}) - 2a{tr{km'^} + Xtr{BSE^}) 

+Q;2(<r {AHH"'"} + AirJBHH"'"}) 

= J(g) - 2a tr{(AR + ABS)HT} + a^||H||^^^B 

= J{g)-2atr{Dn^} + a^\\E\\l, (6.6) 

where C = A + AB, D = AR + ABS, andH^xiV = [h(xi),h(x2),... ,h(xiv)]. 
With the function h fixed, the cost function J(g') is quadratic in a so that 

there is a unique minimizer a{b.). By letting gg ' = 0, simple algebra yields 
that 

tr{DH^} tr{(AR + ABS)HT} 

" ^ ' ^ ^ ^ ^ ^ M U B • '̂-'̂  
The minimum cost ./(g') is then calculated as 

^(g') = Jig) - ^ 4 & ^ = •/(§)(! - ^'(h)), (6.8) 
l|H|lc 

where 

VllKlli + ÎISIIi VS|\/l l«lli + A||S|l| 

It is obvious that !e(h)| < 1 since the cost functions J(g') and J(g) is 
nonnegative. < E.O.F. > 

In practice, we can always assume e(h) > 0 because, if e(/i) < 0, we simply 
change the sign of the fiinction h. Therefore, in the sequel, the absolute symbol 
|.| is removed. Correspondingly, we have a{h) > 0 because Q;(h) and e(h) 
have the same sign. 
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Therefore, each boosting round aims at finding the function h such that 
the cost function is maximally reduced. Equivalently, the value of e(h) is 
maximized. 

iriDH } 
h. = arg maxe(h) = arg max—, (6.10) 

hew hew ^ ^ 

Note that the term A/||Rl|| + A||S||g does not depend on H and hence can be 

ignored in the above. The corresponding value of a is Q;(ii). Finally, the cost 
•7(g') maximally decreases the cost J(g) by a factor of (1 ~ e(h)^). 

Shrinkage 

Shrinkage [235,242] is another measure for reducing the effect of overfitting. 
The idea is very simple: at each round of boosting, simply shrink the newly 
selected function Q;h(x) by a shrinkage factor rj € [0,1]. The new updating 
rule is 

g'(x) = g(x)+7?ah(x), (6.11) 

where a and h are the optimal solutions found above. In practice, we found 
that a modest choice of r; = 0.5 gives good results. 

Figure 6.2 summarizes the regression algorithm using boosting method. 

1 Initialization i = 0. 

(a) Set the fixed parameter values: /̂  (the mean vector), A and B (the normalization matri­
ces), A (the regularization coeflRcient), and r] (the shrinkage factor). 

(b) Set the values related to the stopping criteria: Tmax (the maximum number of itera­
tions), Jrmn (the minimum cost function), £,„,:„, and ami„. 

(c) Set initial values for t = 0: go(x) = 0, ro(x) = y(x), and so(x) = fj,. 

2 Iteration t = I,..., Tmax 

(a) Find h( = arg maxjig^ ^((h) and its corresponding a/,(h/,) and €/,(£/). 

(b) Form the new function gj (x) = g,„j (x) -|- r/ajht (x). 

(c) Evaluate the approximation error r(,(x) = y(x)— g,(x) and the deviation error St(x) = 

(d) Evaluate the cost function ./(g(). 

(e) Check convergence, e.g. see if ./(g,) < Jmin,at < amm.et < emin, or combination 
of them. 

Figure 6.2. Regression algorithm using boosting method. 
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6.1.2 Image based regression 
The image-related entity is the dictionary set 7i, whose every element is 

based on the image x. Intuitively, this function set must be sufficiently large 
such that it allows rendering, through a linear combination, highly complex 
output function y(x). Following the work of Viola and Jones [197], we use 
one-dimensional decision stumps as primitives to construct the weak function 
set 7i. The advantages of using decision stumps include (i) that they are robust 
to appearance variation; (ii) that they are local features; (iii) that they are fast 
to evaluate using the so-called integral image [197]; and, most importantly, (iv) 
that they allows an incremental feature selection scheme that will be addressed 
later. 

Weak function set 

A one-dimensional (ID) decision stump /i(x) is associated with a Haar filter 
feature /(x), a decision threshold 9, and a parity direction indicator p that takes 
a binary value of either +1 or —1. 

Each Haarfilter /(x) has its own attributes: type, window position, and window 
size. Given a moderate size of image, one can generate a huge number of Haar 
filters by varying the filter attributes. See [197] for details. Denote the number 
of Haar filters by M. By adjusting the threshold 9 (say K even-spaced levels), 
for every Haar filter, one can further create K decision stumps. In total, we have 
2KM 1-D decision stumps. Note that the number 2KM can be prohibitively 
large so that it can even create difficulty in storing all these decision stumps 
during training. 

A weak fUnction is constructed as a ̂ -dimensional (g-D) decision stump h(x) 
that simply stacks q ID decision stumps. 

h(x)gxi = [hi{x),h2{x), ...,hq{x)] . 

Note that each hj{x) in the above may be associated with a different parameter. 
Hence, one can construct a sufficiently large weak function set that contains 
{2KM)'J weak functions! 

Feature selection 

Boosting operates as a feature selection oracle. At each round of boosting, the 
features that can maximally decrease the cost function are selected. However, 
to transform the boosting recipe in Figure 6.2 into an efficient IBR algorithm, 
there is a computational bottleneck, that is Step (2a). This step necessitates 
a greedy feature selection scheme that is too expensive to evaluate because, 
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in principle, it involves evaluating {2MNKY decision stumps, a formidable 
computational task in practice. 

One possible way is to break the q-D regression problem into q independent 
ID regression problems, leading to an independent feature selection scheme. 
Consequently, only 2qMNK decision stumps are evaluated at each round of 
boosting. However, the independence assumption is too strong to be hold in 
real situations. 

We propose an incremental feature selection scheme by breaking the g-D 
regression problem into q dependent ID regression problems. Using the incre­
mental vector 

li'(x)ixi = [/ii(x),/i2(x),...,/i,:(x)] 

and the incremental matrices C, D', and H*, 

[h'-i(x)"'",/z,(x iT 

- , i - l , i - l 

-iT , D* = 
• p i - l • 

. dj , H^ = 
• tf-l " 

. h j _ 

we define the incremental coefficient as 

Therefore, we learn a ID decision stump /i,;(x) at one time. 

(6.13) 

hi = argmaxe'(/i). 
hen ^ ' 

In terms of computation, the incremental selection scheme requires evaluat­
ing 2qMNK decision stumps, the same as the independent selection scheme. 
Of course, compared with the independent scheme, there are overhead compu­
tations needed in the incremental scheme because we calculate matrix quanti­
ties like ir{D*H' } and IJH'H î; whereas in the independent feature selection 
scheme, the counterparts are vector inner products. Fortunately, there exist 
reusable computations. For example, it is easy to show that 

^'Hc' | |H*"i||2,_i+2h7H'-i"''c'-i C,;h,; h i 

tr{Tf^^} = ^r{D*-iH'-l"'"} + djh^. (6.14) 

Although the incremental selection scheme in principle yields a suboptimal 
solution, it is better than the independence selection scheme because it utilizes 
the dependence among the output data dimensions to some extent. In fact, 
there exists special cases when the incremental feature selection yields the 
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same solution as the greedy selection scheme. One such case is that when 
C = (51 (e.g. when A = B = I). This makes the denominator term ||H*||?,i in 

Eq. (6.13) a constant value oii(fi, which does not vary with different choices 

of/i functions. Therefore, e*(/i) only depends on ir{D*H* }. But, according to 

Eq. (6.14), maximizing ir {D*H' } can be done by maximizing the term d̂ ' h, 
in each incremental step. 

To improve robustness and remove bias, we randomly permutate the order of 
the dimensions of the output variable. Other tricks to improve computational 
efficiency include: (i) randomly sampling the dictionary set, i.e. replacing M 
by a smaller M'; and (ii) randomly sampling the training data set, i.e., replacing 
Â  by a smaller N'. 

Figure 6.3 presents the incremental feature selection scheme. 

1 Initialization. 

• Create a random permutation of { 1 , 2 , . . . ,q} , yielding {< 1 >, < 2 > , . . . , < g >} . 

2 Iteration over the dimension of the output variable i = 1, 2 , . . . , g 

• (optional) Sample M' Haar filters from the dictionary set and form the reduced set of 
weak functions W'. 

• (optional) Sample N' data points from the training set. 

• Loop over the filter index m = 1, 2 , . . . , M ' and the threshold level index k = 
1, 2, . . . , /< ' to find /?.<»> = arg max;,i=> /̂ e*-'^ {K). 

Form the new vector h*^'^ = [h* '̂ ^> ,/i<i>] • 

Compute reusable quantities tr{D<'>H<'> } and tr{||H<'> j|?,<,> }, 

Figure 6.3. Incremental feature selection. 

6.1.3 Experiments 
We tested the proposed IBR algorithm on the the problem of age estimation. 

For results on the other two problems mentioned in the begiiming of the chapter, 
refer to [260]. For comparison, we also implemented NPR, KRR and SVR, all 
using the RBF kernel function. We used 5-fold cross-validation as the evalua­
tion protocol and tuned the RBF kernel width for empirical best performance. 
Because SVR only works for the single-output regression problem, we decou­
pled the multiple-output regression problem to isolated single-output ones. For 
IBR, we simply set A = B = I and stopped learning after a maximum number 
of boosting rounds is reached. 

Table 6.1 shows the error statistics and computational time for evaluating 
regression outputs of all testing images belonging to the 5 testing subsets used 
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in the 5-fold cross validation. We used different error measurement that is 
meaningful to the data of interest. We collected the error statistics for all testing 
images and reported their mean, 25% percentile, median, and 75% percentile. 
We used C++ programs on a PC with 2.4GHz dual CPUs and 3GB memory to 
record the computational time. 

Age estimation 

Aging modeling [136] is important for face analysis and recognition. In this 
experiment, we focused on estimating the human age. 

Data statistics: We used the FGnet aging database [42]. There are 1002 
facial images in the database. Five random divisions with 800 for training and 
202 for testing are formed. The age ranges from 0 to 69. Normalization was 
done by first aligning 68 landmark points provided by [42] and then performing 
a zero-mean-unit-variance operation. However, we kept sufficient number of 
background pixels. 

Input/output: The input x is a 60 x 60 image; the output y is his/her nor­
malized age. We converted the actual age to y = log{y + 1) to avoid negative 
regressor output. 

Variation: The face images involve all possible variations including illumi­
nation, pose, expression, beards, moustaches, spectacles, etc. Figure 6.4 shows 
sample images of one subject at different ages and with various appearance 
variations. 

Performance: We computed the absolute age difference as the error measure­
ment. The proposed IBR approach (with 500 weak functions, the regularization 
coefficient A = 0.1 and the shrinkage factor r] = 0.5) achieves the best perfor­
mance and runs fastest. In [136], age estimation is performed on a smaller set 
with mostly frontal-view images. The reported mean absolute error in years is 
7.48 using a pure appearance based regressor. 

M-.% .? -%1-
4 , \ 1 

'"m 
1 o:. . .i ? • .«' . i-^: : \ '•'H 

Figure 6.4. Sample images (before and after normalization) of one subject at different ages. 
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mean err. 
25% per, err. 
median err. 

75% per, err. 
testing time(s) 

NPR 

8,44 
2,54 
5.50 
10,87 

^3,6s 

KRR 

13,56 
3,99 
10,80 
17,99 
3,6s 

SVR 

6,60 
1,38 
4,39 
9.04 
3.3s 

IBR 

5.81 
1.26 
3.15 
7.79 

0.016s 

Table 6.1. Comparison of different regressors for age estimation. 

6.2 Face Recognition across Aging Progression 
How does age progression affect facial similarity across a pair of images of 

an individual? Studying the above would have direct implications in passport 
renewal. Passports need to be renewed once in every 10 years and upon renewal, 
passports feature the individual's most recent image. Thus given a pair of 
age separated face images of an individual, what is the confidence measure in 
verifying his identity? 

Our database comprises of 465 pairs (younger and most recent) of face images 
retrieved from the passports of many individuals. Table 6.2 summarizes the 
database. The individuals in our database ranged from 20 years to 70 years in 
age. Since passport images are taken generally under controlled environments, 
the pose of most of the face images were frontal. But there were quite a few 
passport images where we observed an uneven distribution of illumination. 
Moreover, age separated face images of an individual invariably differed in the 
nature of illumination. Thus to study the aging effects on face recognition, 
it would be crucial to reduce variations due to illumination and pose. We 
circumvent non-uniform illumination across the passport images by assuming 
facial symmetry and representing the face by just one half of the face that is 
better illuminated. We address this half as the 'PointFive' face[80]. 

Age Difference 1-2yrs 3-4yrs 5-7yrs 8-9yrs 

# of pairs 165 104 81 115 

Table 6.2. Database of passport images. 

We formulate two approaches to studying facial similarity across time. The 
first one is a classifier based on a Bayesian framework and the second one is a 
direct similarity function across different age groups. 
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Figure 6.5. Age progressed images of individuals 

6.2.1 Age difference classifier 
We present a Bayesian age-difference classifier that is built on a probabilis­

tic eigenspaces fi-amework [56]. Tiie classification based on age-differences, 
comprises of two stages. The first stage of classification deals with establishing 
the identity between a pair of age separated face images. In the second stage, 
the pairs of age separated face images across which identity has been estab­
lished, are further classified based on their age differences. Since the dataset 
comprises of pairs of face images retrieved from passports, the age difference 
across each pair ranged from a year to 9 years. We consider the following four 
age difference categories in our formulation : 1 — 2 yrs, 3 — 4 yrs, 5 — 7 yrs, 
8 — 9 yrs. 

Bayesian framework 

Let 111, Ii2,l2i; I22, , I M I , iM'ibethesetofiVx 1 vectors formed by 
the lexicographic ordering of pixels in each of the M pairs of'PointFive' faces. 
The intra-personal image differences {xi}^_^ are obtained by the difference of 
two 'PointFive' faces of the same individual. 

Xj = lii - li2 (6.15) 

Given the training data {x,;}^j, its KLT basis vectors span the intra personal 
space flj which in turn can be decomposed into two mutually exclusive and 
complementary subspaces F, the feature space (spanned by k basis vectors 
{*i}j=i the variance along each of which is maximum, extracted by principle 
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component analysis) and F, the orthogonal complement space (spanned by the 
basis vectors {^}^^i^_^^). 

We assume that the intra-personal image difference samples are Gaussian 
distributed.The likelihood function for the data is estimated as: 

p{x\ni) exp(- • | ( X - X ) " ' " E -

(27r)'^/^lS|i/2 

(X-X)) _ e x p ( ^ ^ ^ . ^ ^ ^ ) 

1/2 

U72 

(27rp)( N-M}/2 

PF(x|fi/) . Pp{^\nj) (6.16) 

where yi = ^J{x — x) are the principal components,Aj are the eigenvalues, 
^(x) 2^i=k+l Vi |x II - Z^i=i yf is the PC A reconstruction error and p. 

the estimated variance along each dimension in the orthogonal subspace is p 
1 '^i^k+i ^i- The sum ')2i=k+i ^i is estimated by means of extrapolation 

of the cubic spline fit on the computed eigenvalues {AJ}JLI. 

The extra-personal image differences {yzi}^^^ are obtained by the difference 
of two 'PointFive' faces of different individuals. 

= hi ~Ij2, j^i,l<j <M (6.17) 

i M Again, the KLT basis on training data {zij^li spans the extra-personal space 
^E which can be decomposed into two complementary spaces : the feature 
space and the orthogonal space. The density in the feature space is modeled 
using a mixture of Gaussians. We estimate the likelihood for the data as 

p{z\nE) = P{j\e*). PpiA^^E) 

where 
Nc. 

P{y\e)=Y,WiNiy;fii,Ei) 
i = l 

8* = argmax 
M 

X[p{Y^m 
^i=l 

(6.18) 

(6.19) 

(6.20) 

N{y;pi,'Ei) is Gaussian with parameters (/Ui,Ei) and Wi correspond to the 
mixing parameters such that Z]i=i Wi = I. We solve the estimation problem 
using the Expectation-Maximization algorithm. 

During the first stage of the classification, we use the above formulation in 
building a classifier that establishes the identity between a pair of face images. 
Given a pair of age separated face images, we extract the 'PointFive' faces 
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Ii and I2 and compute the difference image x = Ii — I2. The a posteriori 
probabiUty P{Q/|x) is computed using the Bayes rule. 

P(f^/|x) 
p{-x.\ni)p{ni 

P{^\^l)P(Sli) + P{^\i\E)P{^E) 
(6.21) 

The classification of the image difference as intra-personal or extra-personal 
is based on a maximum a posteriori (MAP) rule. For operational conditions, 
P(f2/) and P{^E) are set equal and the difference image x is classified as intra 
personal if P(Q/1x) > 2-

During the second stage of classification, those pairs of face images that 
were classified as intra-personal, are further classified based on their intra age 
differences using the underlying formulation. Let Qj ,^2 S^'i .^4 be the space 
of intra personal difference images for age difference categories 1 — 2 yrs, 
3 — 4 yrs, 5 — 7 yrs and 8 — 9 yrs respectively. We assume the underlying 
distribution of samples from each of the intra-personal spaces to be Gaussian. 

Given a difference image x that has been classified as one belonging to the 
intrapersonal space Q, we compute the a posteriori probability P(J7i|x) with 
« = 1,2,3,4 as: 

P ( 0 , 
P{x\ni)P{Sli) 

E , t i P ( x | % ) P ( l ^ j ) 
(6.22) 

For operational conditions, P(f2j) were set equal. Thus if P(f2i|x) > 
P{i1j\yi) for all i j^ j ,i,j = 1,2,3,4, then fli is identified to be the class to 
which the difference image x belongs. Figure 6.6 illustrates the classifier. 

Itnagc1 
Select 

Ptyint Fivi 

face 

Cojnpute P{Ui\x) 
i= 1,2,3,4 

j = arg max,- P{Qi\x) 

intTa — personal 
image pairs € 

j " " age difference 
category 

xtra — persimal 
image paim 

Figure 6.6. Age Difference Classifier 

Experimental results 
We selected pairs of TointFive' faces of 200 individuals from our database. 

We computed the intra personal difference images from the selected pairs and 
created the intra-personal subspace r̂ . We computed the extra personal differ­
ence images (by randomly selecting two images of different individuals from 
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the 200 pairs of images) and created the extra-personal subspace ^. Thus hav­
ing created the two spaces, we created two sets of image differences : Set I 
comprised of intra-personal diiierence images computed from the 465 image 
pairs from our database and Set II comprised of 465 extra-personal difference 
images computed by the random selection of 'PointFive' faces of different in­
dividuals from our database. The results of the first stage of classification are 
as below: 

• During the first stage of classification, 99 % of the difference images from 
Set I were correctly classified as intra-personal. 

• 83 % of the difference images fi"om Set II were correctly classified as extra-
personal. 

• It was observed that the image pairs from Set I that were misclassified as 
extra-personal differed from each other significantly either in facial hair or 
glasses. Moreover, their average age difference was 7.4 years. 

During the second stage of classification, 50 pairs of'PointFive' face images 
from each of the following age-difference categories 1 — 2 yrs, 3 — 4 yrs, 
5 — 7 yrs and 8 — 9 yrs were randomly selected and their corresponding 
difference image subspaces namely fli, 0,2, O3, ^i were created. The image 
pairs from Set I that were classified as intra-personal were further classified into 
one of the above four age-difference categories using the formulation discussed 
in the previous subsection. The classification results are tabulated in Table 6.3. 
The bold entries in the table correspond to the percentage of image pairs that 
were correctly classified to their age-difference category. 

fil 

ih 
Ha 
^ 4 

Qi 

5 1 % 
17% 
6 % 
1% 

^2 

2 % 
3 7 % 
1 % 
1% 

0 3 

9% 
11 

61 % 
12% 

^ 4 

3 8 % 
3 5 % 
32% 
8 6 % 

Table 6.3. Age-difference classifier results. 

When the image pairs from Set 1 that were correctly classified as intra-
personal were classified further based on age-differences, it was observed 
that image pairs with little variations due to factors such as facial expressions, 
glasses and facial hair were more often classified correctly to their respective 
age-difference category. 
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• Image pairs belonging to age difference categories 1 — 2 yrs or 3 — 4 yrs 
or 5 — 7 yrs with significant differences in facial hair or expressions or 
glasses, were misclassified under the category 8 - 9 yrs. The above trend is 
likely since il^, the subspace of difference images from the age difference 
category 8 — 9 yrs, spans more intra pair variations than compared with 
other three age difference categories. 

Thus, in applications such as passport renewal where the age difference 
between the pair of images is known apriori, if a pair of images are classified 
as intra-personal and further classified to their corresponding age-difference 
category, the identity across the image pair could be verified with low probability 
of error. 

6.2.2 Similarity measure 
We created an eigenspace using 200 'PointFive' faces retrieved from the 

database of passport images. The 465 pairs of 'PointFive' faces were projected 
onto the space of eigenfaces and were represented by the projections along 
the eigenfaces that correspond to 95% of the variance. Since illumination 
variations and pose variations across each pair of 'PointFive' faces is minimal, 
the similarity score between each pair would be affected by factors such as 
age progression, facial expression variations and occlusions due to facial hair 
and glasses. We divided our database into two sets : the first set comprised of 
those images where each pair of passport images had similar facial expressions 
and similar occlusions if any, due to glasses and facial hair. The second set 
comprised of those pairs of passport images where differences due to facial 
expressions or occlusions due to glasses and facial hair were significant. 

The distribution of similarity scores across the age-difference categories 
namely 1 — 2 yrs, 3 — 4 yrs, 5 — 7 yrs and 8 — 9 yrs is plotted in Figure 
6.7. The statistical variations in the similarity scores across each age-difference 
category and across each set of passport images are tabulated in Table 6.4. 

Age Dijference 

1-2 yrs 
3-4 yrs 
5-7 yrs 
8-9 yrs 

First Set 

M 

0.85 
0.77 
0.70 
0.60 

a' 

0.02 
0.03 
0.06 
0.08 

Expression 

/̂  

0.70 
0.65 
0.59 
0.55 

a' 

0.021 
0.07 
0,01 
0.10 

Second Set 

Glasses 

M 

0.83 
0.75 
0,72 
0.68 

a^ 

0.01 
0.02 
0,02 
0.18 

Facial Hair 

jU CT^ 

0.67 0.04 
0.63 0.01 
0.59 0.10 
0.55 0,10 

Table 6.4. Similarity Measure 
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Age-Difference wise distribution of Sjmilanty Score 

1 -2 years 

^ -1 < Score <0.4 
ES 0A< Score < 0-6 
r ~ l 0.6 < Score <0.8 
I I 0.8 < Score <0.9 
^S 0.9 < Score < 1 

3-4 years 5-7 years 8-9 years 
Age Difference Category 

Figure 6.7. Age Diiference Category 

From Figure 6.7 we note that as the age diiference between the pairs of 
images increases, the proportion of images with high similarity scores de­
creases. 

While the distribution of similarity scores has a strong peak for category 
1 - 2yrs, it flattens out gradually as the age difference increases. 

From Table 6.4 we note that as the age difference increases, across both the 
sets of images and across all the variations such as expression, glasses and 
facial hair, the mean similarity score drops gradually and the variance of the 
similarity scores increases. 

Within each age-difference category, we see a notable drop in similarity 
scores when variations due expressions and facial hair are more pronounced. 



PART III 

FACE RECOGNITION VIA KERNEL LEARNING 



Chapter 7 

PROBABILISTIC DISTANCES IN REPRODUCING 
KERNEL HILBERT SPACE 

Probabilistic distance measures, defined as the distances between two proba­
bility distributions, are important quantities and find their uses in many research 
areas such as probability and statistics, pattern recognition, information theory, 
communication and so on. In statistics, the probabilistic distances are often used 
in asymptotic analysis. In pattern recognition, pattern separability is usually 
calibrated using probabilistic distance measures [5] like Chemoff distance and 
Bhattarchayya distance because they provide bounds for probability of error 
in a pattern classification problem. In information theory, mutual information, 
a special example of Kullback-Leibler divergence or relative entropy [4] is a 
fundamental quantity related to the channel capacity. In communication, di­
vergence and Bhattarchayya distance measures are used for signal selection 
[244]. 

Direct evaluation of probabilistic distances is nontrivial since they involve 
integrals. Only within certain parametric distributions, say the widely-used 
Gaussian density, we have analytic expressions for probability distances. How­
ever, the Gaussian density employs only up to second-order statistics and its 
modeling capacity is linear and hence rather limited when confronted with a 
nonlinear data stnicture. By nonlinear data structure, we mean that if conven­
tional linear modeling techniques such as fitting the Gaussian density are used, 
the responses are inadequately approximated. To absorb the nonlinearity, mix­
ture models or non-parametric densities are used in practice. For such cases, one 
has to resort to numerical methods for computing the probabilistic distances. 
Such computation is not robust in nature since two approximations are invoked: 
one in estimating the density and the other in evaluating the numerical integral. 

In this chapter, we model the nonlinearity through a different approach: 
kernel methods. The essence of kernel methods is to combine a linear algorithm 
with a nonlinear embedding, which maps the data from the original vector space 



132 UNCONSTRAINED FACE RECOGNITION 

to the reproducing kernel Hilbert space (RXHS). But, we need not require any 
explicit knowledge of the nonlinear mapping function as long as we can cast 
our computations into dot product evaluations. Since a nonlinear function is 
used, albeit in an implicit fashion, we realize a new approach to study these 
distances and investigate their uses in a different space. 

Clearly, our computation depends on the assumption that the data is Gaussian 
in RKHS. This assumption has been implicitly used in many kernel methods 
such as [263,272]. In [272], PCA operates on the RXHS. Even though it seems 
that PCA needs only the covariance matrix without the Gaussianity assumption, 
it is the deviation of the data from Gaussianity in the original space that drives 
us to search for the principal components in the nonlinear feature space. In 
[263], discriminant analysis is performed in the feature space. Even for LDA, 
it is well known that it has ties to the optimal Bayesian classifier for a two-
class problem, which assumes that each class is distributed as Gaussian with 
a common covariance matrix. Recently, the Gaussianity is directly adopted in 
the literature [261, 262, 266]. In [261, 262], it is used to compute the mutual 
information between two Gaussian random vectors in RKHS. In [266], it is 
used to construct the so-called Bhattacharyya kernel. In fact, the validity of this 
assumption boils down to a Gaussian process argument [266]. However, since 
the induced RKHS is certainly limited by the number of available samples, a 
regularized covariance matrix is needed in [261, 262]. We also propose a way 
to regularize the covariance matrix in this chapter 

This chapter is organized as follows. Section 7.1 introduces several proba­
bilistic distances often used in the literature and Section 7.2 presents a method 
for estimating the first- and second-order statistics for the data in RKHS. Section 
7.3 elaborates the derivations of the probabilistic distances in the RKHS and 
their limiting behavior. Section 7.4 demonstrates the feasibility and efficiency 
of the proposed measures using experiments on synthetic and real examples. 

7.1 Probabilistic Distances in TZ'^ 
Consider a two-class problem and suppose that class 1 has prior probability 

TTi and class-conditional density pi (x) and class 2 has prior probability TT2 and 
class-conditional density P2{x), both defined on TV^. Table 7.1 defines a list of 
probabilistic distance measures often found in the literature [5]. 

It is obvious that (i) the Bhattacharyya distance is a special case of the 
Chemoff distance with a = 1/2; (ii) the Hellinger distance is related to the 
Bhattacharyya distance as follows: 

JT = {2[ l -exp(-JB)]}i /2 . (7 1) 

and (iii) the Kolmogorov distance is a special case of the Lissack-Fu distance 
with a = 1. Some interesting properties of these distances can be found in 
[5, 244] 
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Distance Type Definition 

Chemoff distance [234] Jc{pi,P2) = -log{f^p'^''{ii)p'^'{x)dx} 
Bhattacharyya distance [233] JB{P\,P2) = —log{ L[pi(x)p2(x)]'^^^dx} 

Matusita distance [250] Jr (pi ,P2) = {/^^[^^"(x) - ^/M^fdxY^'^ 

Patrick-Fisher distance [252] •JP{PI,P2) = {J-Jpi{^)^i — P2(x)7r2]^cix}^" 
Lissack-Fu distance [247] . 7 L ( P I , P 2 ) = L\pi{''^)''^i. - P2(x)7r2|"'p"^(x)dx 
Kolmogorov distance [230] JK(PI,P2) = j^j, |pi(x)7ri - p2(x)7r2|c;x 
KL divergence [4] JR{PI\\P2) = /^Pi (x) log{Ei§i}dx 

Symmetric KL divergence [4] JD{PI,P2) = J-^\pi{^) ~ P2(x)] log jj{ijrfx 

"0 < a i , a2 < i andai + «2 = 1-

Tafe/e 7. /. A list of probabilistic distances and their definitions." 

In particular, the symmetric divergence is of great interest in the information 
theory literature [4] and has a close connection with the famous KuUback-
Leibler (KL) divergence [13]. The KL divergence or relative entropy between 
two densities pi(x) and|?2(x) is given by 

JR{PI\\P2) = I Pi(x) l o g { ^ } d x . (7.2) 
ix P2(x) 

However, the KL divergence is not a true metric because neither the symmetry 
constraint nor the triangle inequality is satisfied. The symmetric divergence, 
which is symmetric, is equal to 

•/£>(Pl,P2) = ^i?,(Pl|lP2) + JR{P2\\PI)- (7.3) 

As mentioned earlier, computing the above probabilistic distance measures 
is nontrivial. Only within certain parametric distributions, say the Gaussian 
density, we know how to analytically compute some of the distance measures 
defined above. Suppose that N(x; /x, E) is a multivariate Gaussian density de­
fined as 

N(x;/x, E) = , exp{~^(x - /X)''"E-1(X - /x)}, (7.4) 
/(27r)'^|E| ^ 

where x G VJ^ and j . | denotes the matrix determinant. Withpi (x) = N(x; /ii, Ei) 
and P2(x) = N(x; ̂ 2, ^^2), Table 7.2 lists analytic expressions of some proba­
bilistic distances between two Gaussian densities. When the covariance matri­
ces for two densities are same, i.e., Ei = S2 = E, the Bhattacharyya distance 
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and the symmetric divergence reduce to the Mahalanobis distance [249]: 

JM = JD = 8JB-

Distance Type Analytic Expression 

Chernoff distance 

Bhattacharyya distance 

Patrick-Fisher distance 

KL divergence 

Symmetric KL divergence 

Mahalanobis distance 

Jc{pi.,P2) = ^cxia2{l^i - H2) [ a i S i + a 2 S 2 ] ^{pii-fxi) 
->ll^l+a2^2l + 5l"g |S , | 'n |E , |» 

J B ( P I , P 2 ) = | ( M I - M 2 ) 2 \fJ.i-fJ.2) 

s log . _M_ | 5 ; ^ | l / 2 j j ; 2 l l / 2 ' 

Jp{pi,P2) = [(27r)'*|2Si|]--'/= + [(27r)'*j2E2|]"'/2 

- 2[(2^) '^ |2E|]-^/^exp{-i(^i - ^,2)'^{2E)-\^^ - /.2)}; 

JR{PL\\P2) = | ( M I - fJ.2)^T.-'{fj.i - M2) + 5 logjlfl 

+ i t r [S iS2 - i - Irf] 

JD(PI,P2) = i(Ml - l.l2fiT.r'- + S2" ' ) ( / / l - /i2) 
+ i t r [ E i - ^ E 2 + S 2 ~ ' S i -2Irf] 

•hl{pi,P2) = (/il ~ A*2) S~^(/il - /i2) 

«E = ( S i + S 2 ) / 2 . 

Table 7.2. Analytic expressions of probabilistic distances between two normal densities.' 

7.2 Mean and Covariance Marix in RKHS 
7.2.1 First- and second-order statistics 

Computing the probabilistic distance measures requires first- and second-
order statistics in the RKHS, as shown in Section 7.1. In practice, we have to 
estimate these statistics from a set of training samples. 

Suppose that {xi, X2,.. . , x^r} are given observations in the original data 
space TV^. We operate in the RKHS TZ^ induced by a nonlinear mapping 
function cf) -.TZ'^ -^ TZ^, where f > d and / could even be infinite. The training 
samples in 7̂ -̂  are denoted by ^fxiv = [i?̂ !, </'2, •••, 9̂ Af], where </>„ = (^(x„) G 
7^A 

Using the maximum likelihood estimate (MLE) principle, the mean /x and 
the covariance matrix S are estimated as 

N N 
\ Y, 0(x„) = $e; E = ^ ^(0„_/,)(0„_,,)T = $jjT„iT 
N 

n=l 
N n = l 

* * ' 

(7.5) 
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where the weight vector BATX i = iV~H with 1 being a vector of 1 's, * = $ J, 
and J is an A'' X A'' centering matrix given as 

1.1.1 Covariance matrix approximation 
The covariance matrix E in Eq. (7.5) is rank-deficient since f > N. Thus, 

inverting such a matrix is impossible and an approximation to the covariance 
matrix is necessary. Later in Section 7.3 we show a limiting behavior of this 
approximation. 

Such an approximation S should possess the following features: 

• It keeps the principal stracture of the covariance matrix E. In other words, 
the dominant eigenvalues and eigenvectors of S and S should be the same. 

• It is compact and regularized. The compactness is inspired by the fact that 
the smallest eigenvalues of the covariance matrix are very close to zero. The 
regularity is always desirable in the approximation theory. 

• It is easy to invert. 

We proposed to the following approximation form [276]: 

s = pif + (pjqq'^j"'"*"'" = pif + ^A*""", (7.7) 

where Q is an A'̂  x r matrix, A = JQQ ' J ' , and p > 0 is a pre-specified constant. 
Typically, q « N « f. Firstly, when 

Q = V,{l,-^pA-y/\ 

where V, and A^ encode the top q eigenvectors and eigenvalues of the K matrix, 
the top q eigenpairs of E are maintained and R is any qxq orthogonal matrix, i.e., 

R R = RR = Ig. Without loss of generality, we set R = Iq. Hence, if p = 0, 
we exactly maintain the subspace containing the top q eigenpairs. Secondly, S 
is regularized and its compactness is achieved through the Q matrix. Finally, S 
can be easily inverted by using the Woodbury formula [8], 

S~^ = (pi / + WW""")"̂  = p~^{lf - WM-̂ w""") = p'^{lf - $6$"'"), (7.8) 

where B = JQM~̂ Q ' J ' and the matrix M x̂g is 

M = piq + w''"w = plq + Q"''KC|. (7.9) 

After obtaining Q, it is easy to check that the following equations hold: 

Ag, |M1 = !A,| = n Ai, M^' = A-S |S| - p^-«|A,|. (7.10) 
=1 
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A = J V , ( I , - Mq"')v3'j"^, B = JV,(A,-i - pA-2)vTjT. (7.11) 

tr[AK] = tr[Aq] - pq, tr[BK] = q- p t r [ A , ^]. (7.12) 

7.3 Probabilistic Distances in RKHS 
Since the probabilistic distances involve two densities p i andp2 , we need two 

sets of training samples: $1 for pi and $2 for p2- For each density pi, we can 
find its corresponding e^, J j , m, E^, K ,̂ S ,̂ V,,,i, A,,,, = D[Ai,i, A2,i , . . . , Ag,_i], 
Aj, Bj, etc., by keeping the top g, principal components. In general, we can have 
qi ¥= 12 and A î ^ N2 with iV^ being the number of samples for the i*'' density. 
In addition, we define the following dot product matrix: 

[$j $2 $7*1 'i'7<i?2 

$2 *1 ' i ' l*2 

Kii K12 

K21 K22 
(7.13) 

where K̂ ^ = $ / (|?j and K21 = K^j. 

7.3.1 The Ciiernoff distance and the Bhattarchayya 
distance 

As mentioned before, the Bhattarchayya distance is a special case of Chemoff 
distance with a = 1/2. Hence, we focus only on the Chemoff distance. 

The key quantity in computing the Chemoff distance is a i S i + 0:282 with 
a i + 0:2 = 1- We now analyze this in detail. 

a i S i + a 2 S 2 = Q;i{pI/ + * i A i $ 7 } + a 2 { p I / + *2A2*I} 

= pI/ + ai$iAi$7 + a2*2A2$J 

p i / + [#i ^2 

plf + [$i $2 

plf + [$i <^2]Kh 

aiAi 0 

0 Q;2A2 

a i J i Q i Q ^ j J 

*T 

[*71 
. *I. 

0 

a2J2Q:i Q2 J2 

• $ T -

. *I. 

<^A 

where the matrix Â .̂  is rank-deficient since k^h = PP with 

(Ni+N2)x{qi+q2) 
/ o l J iQ i 

0 
0 

a2J2Q2 

(7.14) 

(7.15) 
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Therefore, the matrix a i S i + a2S2 is of such a form that we can easily find its 
determinant and inverse. 

The determinant | a iS i + Q;2S2| is given by 

biSi+aaSal J-(<ii+(n) 
qi+q2 

ip i , ,+ , ,+Li=/- ( ' ' ^+«=) n (^ '+p) ' (7-16) 

where {r^; i = 1 , . . . , 51 + 92} are the eigenvalues of the L matrix. The L 
matrix is given by 

"('?l+'?2)x(5l+(72) 
nl 

T 
[$1$2]P = P 

2 J 

^ T T T . 

K l l K12 

K21 K22 

H T T T , aiQi' Ji' KiiJiQi VoIa^Qi' Ji' K12J2Q2 
T,T: , „ . T.n. . ^ ^HTTT . . \A1Ta2Q2 J j K21J1Q1 a;2Q2 J2 K22J2Q2 

V'aia2L72 a2{A,2,2 " ^ 1 ^ 2 } 
(7.17) 

},P^. 

withLi2 = Q7J7KI2J2Q2. 
The inverse {a iSi + Q;2S2}~'^ is given by 

{a iSi + a2S2}"^ = p " H l / " [*i *2]Bc/,, 

where 

Bc,, = P (p l5 i+ ,2+L)"^ -

We now show how to compute the following two terms needed for evaluating 
the Chemoff distance as shown in Table 7.2. 

2 J 

(7.18) 

(7.19) 

/ i 7 { a i S i + a 2 S 2 } V j = e 7 * J / 3 H i / - [*i *2]Bc/, 
$1 

T $ 

p - i { e j K y e j - e 7 [ K , i M B c f t 

2 J 

Ky 

K2i 

P ^Cy, 

, | a i S i + a 2 S 2 | "'^\ 
log — ; ; ; = Qfl > log 

^ |Si|«l|S2|"2 -^ ^ 
p + n 

171+92 

A, a2 
i,l 

Z] log P + Tj 

Ai,2 

(7.20) 

(7.21) 

where {Ai,i;i = 1,2, ...,^1} and {\i^2',i = 1,2, ...,92} are eigenvalues for 
Si and S2, respectively. Notice that (i) {Aj^i;i = qi + 1, •••,qi + 92} and 
{ Ai,2; i = 92 + 1 r • • •, <?! + 92 }, all equal to p's, are introduced only for notational 
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convenience; (ii) the infinite dimensionality / in Eq. (7.20) and Eq. (7.21) 
disappeared as needed; and (iii) all calculations are based on the Gram matrix 
defined in Eq. (7.13). 

Finally, we compute the Chemo if distance as follows (with ax = l~ a and 
ct2 = Of): 

2^c(pi,P2) = P ^ a i a2{6 i+C22-2^12}+«! V log——- + 

a ^ E l o g ^ - (7-22) 

7.3.2 The KL divergence and the symmetric divergence 

Computing the KL divergence in the RKHS is done by collecting terms like 
/ i J s -V / t and t r lS jS j i } . 

= P~^i.^i ^ik^k ~ Sj KijBjKjkSk) == P^^Oijk- (7.23) 

triSiSj'] = tr[(<&,Ai$7 + p i ^ ) p - i ( i ^ - $ , B , $ J ) ] (7.24) 

+ / - tr[$jB,<I>J] 

= p-hr[kiKii] - p-hrlAiKijBjKji] + / - t r[Bj%] 

= p~Hr[A,,,i] ~qi- p~^tr[AiKijBjKji] 

P Htr[A,„i] - ??y } + ptr[A M + / - ( % + g.,), 
93 J J 

where 
rjij — tr[AjKjjBjKjjJ. 

Finally, we obtain the KL divergence and the symmetric divergence in the 
RKHS by substituting Eqs. (7.23) and (7.24) into the analytic expressions listed 
in Table 7.2 with d replaced by / , 

2Ji?(Pl||P2) = P^^{0l2l+d222-0u2-022l} 

+ {log|A<Z2,2|-log|A,i,i|} 

+{'71 -<72)logp + p^Htr[A,i,i] -ryi2} 

'+p{tr[A-\]}~{qi+q2). (7.25) 
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'^JD{P1,P2) = P^U^IU +'^121 + ^212 + 6*222 

- ^112 - 0i22 — d-zn - ^221} 

+p~\tr[Aq,,i] + tr[A,,,2] - Vri - V2x} 

+p{tr\A-^\] + tT[A-^\^]} - 2{qi + 92). (7.26) 

7.3.3 The Patrick-Fisher distance 
Given the above derivations in Sections 7.3.1 and 7.3.2, computing the 

Patrick-Fisher distance Jp{pi,P2) can be easily done by combining related 
terms. 

jp{px,P2) = mn^pf-'^^ n ^ui^'/' + mnyp^'"' n ^̂ ,2]"'̂ ' 
i= t i= l 

e x p { - p ^ ^ ( 6 i + e 2 2 - 2 a 2 ) } . (7.27) 

where {r,;; i = 1 ,2 , . . . , qi + (72} are the eigenvalues of the L matrix defined in 
Eq. (7.17) with a = 1/2. 

7.3.4 Limiting behavior 
It is interesting to study the behavior of the distances when p approaches to 

zero. 
First, 

lim A = A = J V „ v J j ^ , lim B = B = JV„A"^vJj"'", (7.28) 

Then, 

\im^9ijk = Oijk = &i Kjfeefe-e^ KyBjKjfeefc, I m 7?ij = r}ij = tr[BiKijAjKjj]. 

(7.29) 
Similarly, 

lim £ij = iij == ej Kijej - ê  [Kn Ki2%h 
p-»0 

Ky 
K2j 

Bj, (7.30) 

where Bc^ = limp_o ^ch-
Finally, 

I i rnpJc(pi ,P2) = >/c(pi,P2), (7.31) 

lim O J R ( P I | | P 2 ) = JR{P\\\P2), (7.32) 
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limp,7jr)(pi,p2) = JD{PI,P2), (7.33) 

where 

2Jc(pi,P2) = a ( l - a){in+i22 ~ 2^2}, (7.34) 

2i i?(pi |b2) = ^121 + ^222 ~ ^122 - fei + tr[Aq,,i] - f)i2, (7.35) 

2ijr)(Pl,P2) = ^111 + ^121 + ^212 + 6*222 - ^112 - 6*122 - ^211 - ^221 

+tr[Aq,,i] + tr[A,2,i] " ^ 2 - %i- (7.36) 

When a = 1/2, we obtain the limiting distance for the Bhattacharyya distance 

•2JBipi,P2) = \{iu + I22 - 262}. (7.37) 

The limiting behavior of the Patrick-Fisher distance Jp{pi,P2) is not inter­
esting since it involves / , thus we omit its discussion. 

As mentioned earlier, when p = 0 and qi = q2 = q, we actually use 
the subspace of the RKHS containing the top q eigenpairs. Therefore, the 
derived limiting distances calibrate the pattern separability on this subspace of 
the RKHS and carry many optimal features their original counterparts possess, 
yet additionally equipped with a nonlinear embedding. 

7.3.5 Kernel for set 
A set here is a collection of observations. A kernel for set is a two-input 

kernel function that takes the two sets as inputs and satisfies the requirement of 
positive definiteness. 

Several kernels for set have emerged in the literature. In [275], Wolf and 
Shashua proposed the kernel principal angle. The principal angle is defined 
as the angle between the principal subspaces of the two input sets and then 
'kemelized'. In [265], Jebara and Kondor showed that the Bhattacharyya co­
efficient [244] that operates the probability distribution defined on the original 
data space is a kernel. In [266], they extended the Bhattacharyya kernel to 
operate the probability distribution defined on the RKHS. In [269], Moreno et. 
al. proposed a kernel function based on the KuUback-Leibler divergence in the 
original data space. 

It is obvious that our probabilistic distance measures can be adapted as kernel 
functions for set. First, the Bhattacharyya kerne! defined in [265] differs from 
the Bhattacharyya distance by — log(.). Secondly, the adaptation can be in the 
sense of [269]. Other ways are possible by utilizing the construction rule of 
kernel functions. 
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• % 

(c) 

jiH * » J 

(b) 

i«¥^ 

(d) 

Figure 7.1. 300i.i.d. realizations offour different densities with the same mean (zero mean) and 
covariance matrix (identity matrix), (a) 2-D Gaussian, (b) 'O'-shaped uniform.(c) 'D'-shaped 
uniform, (d) 'X'-shaped uniform. 

(a) (b) 

Figure 7.2. (a) The symmetric divergence ,JD (cr, q) and (b) the Bhattacharyya distance JB (CT, q) 
between the 2-D Gaussian and the 'O'-shaped imiform as a fimction of cr and q. 

lA Experimental Results 
In the following experiments, we use only the limiting distances, namely 

Jc{pi,'P2) (or JB{P\,P2)), 'h.{pi\\P2), and JD{PI,P2), since they do not de­
pend on the choice p, which frees us from the burden of choosing p. Also, we 
set qi=q2 = q. 
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1A.\ Synthetic examples 
To fail the KL distance between two Gaussian densities in the original space, 

we designed four different 2-D densities sharing the same mean (zero mean) and 
covariance matrix (identity matrix). As shown in Figure 7.1, the four densities 
are 2-D Gaussian, and 'O'-, 'D'-, and 'X'-shaped uniform densities, where say 
the 'O'-shaped uniform density means that it is uniform in the 'O'-shaped region 
and zero outside the region. Figure 7.1 actually shows 300 i.i.d. realizations 
sampled from these four densities. Due to identical first- and second-order 
statistics, the probabilistic distance between any of two densities in the original 
space is simply zero. This highlights the virtue of a nonlinear mapping that 
provides us information embedded in higher-order statistics. 

Obviously, the probabilistic distances depend on q, the number of eigenpairs, 
and (T, the RBF kernel width. Figure 7.2 displays Jp and JB as a function of 
q and a. The effect of o" is biased: It always disfavors a large a since a large a 
tends to pool the data together. For example, when a is infinite, all data points 
collapse to one single point in the RKHS and become inseparable. Generally, 
it is not necessary that a large q (or equivalently using a nonlinear subspace 
with a large dimension) yields a large distance. A typical subspace yielding the 
maximum distances is of low-dimensional. 

Table 7.3 lists some computed values of the probabilistic distances. It is 
interesting to observe that when the shapes of two densities are close, their 
distance is small. For example, 'O' is closest to 'D' among all possible pairs. 
The closest density to the 2-D Gaussian is the 'O'-shaped uniform. 

JR{PI\\P2) 

Gau 

•o-
'D' 
•X-

Gau 

-
.0584 
.0670 
.0944 

V 

.0740 
-

.0295 

.0505 

'D-

.0782 

.0281 

-
.0417 

•X' 

.0808 

.0523 

.0436 

-

(a) 

JB{PX,P2) 

Gau 
V 
'£)• 
'X' 

Gau 

-
.0033 
.0037 
.0048 

•O' 

.0033 

-
.0021 
.0099 

•D' 

.0037 

.0021 
-

.0086 

•X-

.0048 

.0099 

.0086 

-

(b) 

Table 7.3. (a) The KL distances in the RKHS with CT = 1 and </ = 3. (b) The Bhattacharyya 
distances in the RKHS with a = 0.5 and q = 1. pi is listed in the first column and pi in the 
first row. 
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7.4.2 Face recognition from a group of images 
The gallery set consists of 15 sets (one per person) while the probe set consists 

of 15 new sets of the same people (one per person). In these sets, the people can 
move their heads freely so that pose and illumination variations abound. The 
existence of these variations violates the Gaussianity assumption of the original 
data space used in [118]. Figure 7.3 shows some example faces of the in the 4*'' 
gallery person, the 9*'* gallery person, and the 4*'' probe person (whose identity 
is same as the 4*'' gallery person). The 32 x 32 face images are automatically 
cropped from video sequences (courtesy of [109]) using a flow-based tracking 
algorithm. 

Symmetric divergence Bhattacharyya distance 

J{pi,P2)intheRKHS 13/15 13/15 
J {pi, pa) in the original space TZ 11/15 11/15 

Table 7.4. The recognition score obtaining using the symmetric divergence and Bhattacharyya 
distance. 

A generic PCA is performed to reduce the dimensionality to 300. Figure 
7.3 also plots the first three PCA coefficients of the 4*'* gallery person, the Q*'' 
gallery person, and the 4*'' probe person. Clearly, the manifolds are highly 
nonlinear, which indicates a need for nonlinear modeling. 

Table 7.4 reports the recognition rates. The top match with the smallest 
distance is claimed to be the winner. For comparison, we also implemented 
the approaches using the symmetric divergence [118] and the Bhattacharyya 
distance in the original space. Clearly, using the distances in RKHS yields 
better result. Out of 15 probe sets, we successfully classified 13 of them. In 
fact. Figure 7.3 shows a misclassification example in [118], where the 4*'' probe 
person is misclassified as the 9*'' gallery person, while our approach corrects 
this error. 
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(a) 

(b) 

(c) 

Figure 7.3. Examples of face images in the gallery and probe set. (a) The 4"* gallery person 
in 10 frames (every 8 frames) of a 80-frame sequence, (b) The 9"' gallery person in 10 frames 
(every 10 frames) of a 105-frame sequence.(a) The 4"* probe person in 10 frames (every 6 
frames) of a bO-frame sequence, (d) The plot of first three PCA coefficients of the above three 
sets. 



Chapter 8 

MATRIX-BASED KERNEL SUBSPACE ANALYSIS 

Subspace methods are widely used in the face recognition literature due to 
the influential 'Eigenface' approach [64]. However, as mentioned in Chapter 
??, subspace analysis in the original data space is very limited. Kernel method 
is one way to enhance its modeling capability. 

It is a common practice that a matrix, the de facto image representation, is 
first converted into a vector before fed into subspace analysis or kernel method; 
however, the conversion ruins the spatial structure of the pixels that defines the 
image. In this chapter, we propose two kernel subspace methods that are di­
rectly based on the matrix representation, namely matrix-based kernel principal 
component analysis (matrix KPCA) and matrix-based kernel linear discrimi­
nant component analysis (matrix KLDA). We derive their principles in sections 
8.1.1 and 8.1.2, respectively. Correspondingly, we call the vector-based ker­
nel principal component analysis as vector KPCA and the vector-based linear 
discriminant analysis as vector KLDA. 

We fiirther show in section 8.2.1 that the matrix KPCA and matrix KLDA 
generalize the vector KPCA [272] and vector KLDA [263, 268]. In particular, 
the Gram matrix used in the vector KPCA and vector KLDA can be derived 
from the one used in the matrix KPCA and matrix KLDA. Therefore, matrix-
based methods provide richer representations than vector-based counterparts. 
Our experiments in section 8.2.2 also demonstrate the advantages of matrix-
based methods. Another advantage of the matrix-based methods is that they 
enable us to study the spatial statistics in the matrix. 

To facilitate our analysis, we introduce the following quantity 'kemelized 
matrix'. 
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Kernelized matrix 

For a matrix Xpxg = [=^f=i Xj], we define its kemerlized matrix (j>it) as 

which maps each column of the matrix X to the nonlinear feature space. Note 
that the kernelized matrix is a hypothesized quantity introduced for analysis: 
we do not really compute this in practice. The dot product matrix K x̂r; of two 
kernelized matrices X and Y is given as 

K(X,Y),x, = </'(X)"r<A(Y) = [ C i [^U ^(^-y.;)] ]• 

Similarly, for the block matrix Xpxnq = [=^?=i X̂ ] and its kernelized matrix 

0(A')/x„, = K?=i </'(x,)], 

we can compute the dot product matrix K-nqxnq of the two kemerlized block 
matrices (l){X) and (j){y) as 

ic{x,y) = ^{x)'^Hy) = [C=i K i = i K(Xi,Y,-)] ]. 

The matrix JCnqxnq is also a block matrix. 

8.1 Matrix KPCA and Matrix KLDA 
8.1.1 Matrix KPCA 

Given a matrix Xpx,j and its kernelized version (f>{X)fxq, the matrix KPCA 
attempts to find the projection matrix U/xr, i-e., 

Z,x, =uJx,0(X)/xg, (8.1) 

such that the variation of the output matrix Z^x^ is maximized. 
In the above definition, we note the following: 

• We assume that the mean of the data (i.e. (/'(X)) is removed; otherwise, it 
contributes only a constant matrix to the output matrix Z in Eq. (8.1). 

• Because each column is lifted from TW to TZ-^, we will call the above matrix 
KPCA as column-lifted matrix KPCA. To obtain a row-lifted matrix KPCA, 
we simply replace X with X' . 

Zpx,, = {v|x,V'(x"^)/xp}"^ = V'(x"^)"^v. 

• For one projection direction, the column-lifted matrix KPCA outputs a prin­
cipal component vector whose dimensionality equals the number of the 
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columns of the input matrix. In comparison, the vector KPCA [272] out­
puts a principal component value for one projection direction. 

We start by finding the first project direction u/xi such that the variation of 

e output vector matrix zixq = u (/!)(Y) 
have the following optimization problem: 

max I 

the output vector matrix zixq = u (/!)(Y) is maximized. Mathematically, we 

max llz - Efzllp = u Su, 

where 
E /x / = E[{</>(X) - E[,^(X)]}{0(X) - E[0(X)]}T] 

is the total scatter matrix. It is easy to show that the optimal vector u is the 
leading eigenvector of E corresponding to the largest eigenvalue. 

In practice, we learn the projection vector u based on a training set X = 
[=^f^^ li] that is kemehzed to </)(A')/xnq = [^"=1 H^i)]- The mean E[(/»(X)] 
is estimated as 

n . , 

where e„xi = [li li • • •; 1] is a column vector of I's, and the total scatter 
matrix E is estimated as 

^ = - E{'̂ (X») - m}{Ht^i) " W)}^ = ^iX)Jj'^^iX)^ (8.2) 

where Jnqxnq plays the role of data centering. 

Unnxna — 7= J Ĉ  Iq, ^nxn — J-n 6® • 

It remains to show how to compute the eigenvector of the E matrix. Usually, 
the matrix E is rank deficient because the cardinality of the nonlinear feature 
space is quite large. In the case of the RBF kernel, / is infinite. We follow the 
standard method given in [64] to calculate the leading eigenvectors for a rank 
deficient matrix. 

Define the matrix ICnqxnq as 

JC = j'^(f,{X)'^(t){X)J = j'^ICiX, X)J, 

where IC{X, X) is the Gram matrix that is computable in practice. Suppose 
that (A, v) is an eigenpair of the matrix AC, i.e., v„^x i is an unit eigenvector with 
the corresponding eigenvalue A or JC^ = Av. Because 

4,{X)jiCv = t((>{X)Jv = X4>{X)Jv, 
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the vector u/xi = 4'{X)Jv is an eigenvector of the matrix S with the corre­
sponding eigenvalue A. To obtain a normalized vector u, we note that 

u'̂ 'u = Y^ J^ (f>{X)^ (j){X)Jv = Xv^v = A. (8.3) 

Therefore, (A,u == -^4,{X)Jv) is an eigenpair of the matrix S. 

For a given matrix Ypxq = [=>'=i yj], its principal componentvectorzixq = 

u (/)(Y) is computed as 

z = - L v T jT^(^)T^(Y) = - IvT jT[^n^^ K(X,, Y)]. (8.4) 

Similarly, we first obtain the top r eigenpairs {(A ,̂ v^); i = 1 , . . . , r} that 
are associated with the matrix IC and then convert them to those of the matrix 
E. In a matrix form, the eigenvector matrix is given as 

where V„qxr = [=^i=i ^i] encodes the top m eigenvectors v̂  of the matrix K, 
and A is a diagonal matrix whose diagonal elements are {A ;̂ i = 1 , . . . , r} . 
The matrix for all principal component vectors is 

Z,x9 = m=l ^i] = A ~ l / 2 v ^ j T [ ^ n ^ ^ K(X,,Y)]. 

The column-lifted matrix KPCA is summarized in Figure 8.1. It should 
be noted that when the kernel function is A:(x, y) = x ' y, then matrix KPCA 
reduces to matrix PCA [66]. However, the 'kernel trick' substantially enhances 
the modeling capacity of the matrix PCA that is linear in nature. 

8.1.2 Matrix KLDA 
The matrix KLDA attempts to find the projection matrix U/xr, 

I .e . , Zy-XQ — 

U' <̂ (X), such that the within-class variation of the matrix Z is minimized while 
the between-class variation of the matrix Z is maximized. Again this is a 
column-lifted definition. 

We only show how to find the first project direction u/ x i; the rest just follows. 
Mathematically, we have the following optimization problem: 

max -^ , 
IWI=1UIS;M/U 

where Eiy is the within-class scatter matrix and S B the between-class scat­
ter matrix. The optimal vector is the leading eigenvector corresponding to a 
generalized eigenvalue problem, 

Sfiu = ASH/U. (8.5) 
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\Training\ 

• Compute the centering matrix J, the Gram matrix IC{X,X), and 
the matrix IC. 

• Find the leading r eigenpairs {(A ,̂ v^); i = 1,2, ...,r} ofthe matrix 

• The leading r eigenpairs for the matrix E is 
{(Ai, ^(/.(-Y) Jv i ) ; i - l , 2 , . . . , r } 

[Prq/ec?/on] 

• For an arbitrary input matrix Y, find its i*^ principal component 

vector using Eq. (8.4), that is Zi = - i=v7 j"^[JJ-"=i K(Xj, Y)]. 

Figure 8.1. Summary of matrix KPCA. 

It is easy to show [7] that the total scatter matrix T, can be written as E = 
T,\Y + Eg. Therefore, Eq. (8.5) is equivalent to 

Efiu = AEu, (8.6) 

except that there is a difference in the eigenvalue. 
We assume that the training set is given as A" = [=>"=i X̂ ] and each data 

point Xi has its class label function /i(Xj), taking a value in the class label set 
{ 1 , 2 , . . . , C } . In section 8.1.1, we showed that the matrix S can be estimated 
as S = (l){X)Jj'^4>{X)^, e.g., Eq. (8.2). We now derive the estimate for the 
matrix E^, denoted by E^. 

Without loss of generality, we further assume that the data points are already 
ordered by class labels. The number of data points belonging to the class c is 
given as ric = Z]"=i I[H^i) ^ c], where /[.] is an indicator function. 

The mean for the class c is estimated as 

where Cc is a column vector of size n x 1 given as eg = [JJ-"=i /[/i(Xj) = c]l 
The between-class scatter matrix E^ is estimated as 

c _ _ 
n. ±B = - J2iM^) - <^W}{0c(X) - 0(X)} ' = ^iX)W<P{X)', 
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where Wnqxnq = W„xn ® Iq and 

n ~ Uc n rir n 
c = l '• '-

It is easy to show that W„x„ = JnxnBnxn Jnxn where 

Bnxn — 

Therefore, 

W = (JBJj (H* Ig ^ Jnqxnqtjnqxnqdnqxnq) 

where 

Onqxnq ^̂  Jnxn ® Ig; tinqxnq ^ "jjxn ^ Iq-

Combining the above derivations together, we have 

» E B = (̂ (A-) JSjT0( ; \^)T. (8.7) 

Substituting the ensemble estimators of the scatter matrices, i.e., Eqs. (8.2) 
and (8.7), into Eq. (8.6) yields 

(j){X)JBj'^ct>{X)'^u = Xcl>{X)Jj'^(l){X)'^u, (8.8) 

The eigenvector u/xi of Eq. (8.8) is in the form of 

u = (l){X)Jv, 

where v„^xi is the leading eigenvector that satisfies 

IC{X, X)BiC{X, X)y = XiC{X, X)K,{X, X)^. 

To normalize the eigenvector u, we obtain 

u = -i=,/,(A')Jv, C = ^'^iC{X, X)v = V'^J^K:{X, X)JV. 
V? 

For an arbitrary matrix Ypxq, its discriminative vector is computed as 

zix, -nT0(Y) = - L v V " ^ [ 4 t l K(X,,Y)]. 
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8.2 Discussions and Experimental Results 
8.2.1 Discussions 

It is insightful to compare the (column-lifted) matrix KPCA with the vec­
tor KPCA. This is especially important because the current practice usually 
vectorizes a matrix to a vector. 

The vector KPCA [272] is based on the Gram matrix K(A', X)nxn whose 
if^ element is fc(wec(Xi), tiec(Xj)), i.e., 

Y.{X,X)nxn — [JJ-r=i 

whereas the block Gram matrix 
" j = i fc(wec(Xi),«ec(X,-))]: 

IC{X,X)nqxnq = [|l-"=l [=^j = l K(Xi,Xj)] ] 

is used in the matrix KPCA. First, these two Gram matrices have different sizes. 
The matrix K, has a much bigger size than the matrix K. As a consequence, the 
vector KPCA finds maximally (n — 1) eigenpairs, whereas the matrix KPCA 
has maximally (n — l)q eigenpairs. Also, the vector KPCA outputs a vector 
of maximum size (n — 1) x 1 while the matrix KPCA outputs a matrix of 
maximum size (n — 1)^ x q. In term of training complexity, matrix KPCA is 
more computationally involved than vector KPCA. Table 8.1 summarizes the 
above comparisons. 

Vector KPCA Column-lifted matrix KPCA 

Input 
Number of training samples 
Gram matrix size 
Maximum # of principal components 
Output of maximum size 

pq X 1 vector 
n 

n X n 
( n - 1 ) 

(n — 1) X 1 vector {n-

p X q matrix 
n 

nq X nq 
( " - 1 ) 9 
l)q X q matrix 

Table 8.1. Comparison between vector KPCA and matrix KPCA. 

Second, the two Gram matrices are closely related. We compare the ij*'' 
element of K(A:', X), or fc(wec(Xj), wec(Xj)), with the if^ block oiK.{X, X), 
orK(Xi,X,). For convenience, we let Xi = A = [=>^̂ ^ â ] andXj = B = [^'l^j 
bj]. Using the RBF kernel fc(a,b) = exp{-6'"^|[a - bjp}, the quantities 
k{vec{k), uec(B)) (or fc(A, B) in short) and K(A, ^)qxq are computed as follows. 

fc(A,B) = \{k{s^,hi), K(A,B) = [ C i K L i '^(a^bj)]]. 

The scalar fc(tiec(A), wec(B)) is just the product of the diagonal elements of the 
matrix K(A, B)qx(j- The Gram matrix K(A', X)nxn can be completely derived 
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from the block Gram matrix 1C{X, X)nqxnq- In general, the above relationship 
between the two Gram matrices holds. Because the mapping from /C(A', X) 
to ¥.{X,X) is many-to-one, the block matrix K{X,X) contains more infor­
mation than the matrix Y^{X,X). Thus, the matrix KPCA provides a richer 
representation than the vector KPCA. 

More importantly, K(A, B) can be viewed as encoding the column-wise statis­
tics, because its ij*'*̂  element fc(ai, bj) compares two columns. Spatial statistics 
of higher order between columns are somewhat captured. However, this prop­
erty is typically lost in k{vec{k),vec{?,)). For example, in the RBF kernel, 
there is no comparison between the two columns â  and bj when i ^ j . 

Another advantage of the matrix KPCA is that in the matrix KPCA we can 
interchange the role of row and column. This can be done by simply replacing 
a matrix X by its transpose X . Alternatively, we can perform the following 
recursive procedure. 

Xpxq ' (̂1) ^ry.q — ^fxrH^)/ xq 

^^(2) Z,x« = ^(Y"'')|X^V/X.S = V'('/'(X)''"u)"''v, (8.9) 

where 'i—>(i)' means the column-lifted matrix KPCA and 'i—>^2)' means the 
row-lifted matrix KPCA. Through the above procedure that is similar to bilinear 
analysis [214], we essentially perform the matrix KPCA first along the column 
and then along the row to capture both column-wise and row-wise statistics of 
higher order. 

Similar observations can be made when comparing the matrix KLDA and 
the vector KLDA. 

8.2.2 Experimental results 
In this section, we show two applications of the kernel methods developed 

above. 

Visualization 

We applied the matrix KPCA to 200 images of the digit 'three'. Figure 8.2(a) 
shows ten example images of size 16 x 16. The digit 'three' manifests a spatially 
nonlinear pattern. To capture it, methods able to handle both nonlinearity and 
spatial statistics are required. 

The column-lifted matrix KPCA is first applied along the column direction 
using the kernel fiinction fc(x, y) = exp{—32"^||x — y|p}. We kept only the 
top 16 principal components that are displayed in Figure 8.2(b). Note that each 
output matrix is again of size 16 x 16. Next, we further applied the row-lifted 
matrix KPCA, with a different kernel function fc(x,y) = exp{ —[|x — y|p}, 
along the row direction (of those in Figure 8.2(b)), Again, we kept only the 
top 16 principal components. The outputs are shown in Figure 8.2(c). It is 
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interesting to observe that there is a distinctive white line characterizing all 
these images. 

We adopted the local linear embedding (LLE) [251] to visualize the data in 
different representations. Figure 8.2(d) visualizes the original images, where 
a triangle structure appears. In Figure 8.2(e), the vector KPCA representation, 
obtained using the kernel function fc(x,y) = exp{--128~^|lx — y|p}, is dis­
played. Note that the structure in Figure 8.2(e) is only slightly tighter than that 
in Figure 8.2(d), meaning that vector KPCA does not change the distribution 
of the data too much. 

Figure 8.2(f) visualizes the data representation after the column-lifted matrix 
KPCA with the kernel function A;(x,y) = exp{ —||x — y|p} is applied along 
the column vector. The data becomes very clustered. The row-lifted matrix 
KCPA with the same kernel function is further applied along the row direction 
and its output is visualized in Figure 8.2(g). The data is even more clustered 
after high-order row and column statistics are somewhat captured. However, it 
is not fully captured because the data still form a tight nonlinear manifold. It 
should be noted that changing the kernel function does not affect the structure 
presented in the figure. 

Face recognition 

One main application of subspace analysis is face recognition [64,65,66,29]. 
We also tested the matrix KPCA and KLDA for this task. In particular, we 
focused on variations in pose and illumination. 

The AT&T database has 40 subjects with 10 images for each subject. Figure 
8.3(a) shows one subject at 10 poses. While pose variations ruin the pixel 
correspondence required for vector-based method, matrix-based methods are 
relatively immune to this problem. We randomly divided 10 images of one 
subject into two sets, M images for training and N images for testing (M+N = 
10). Such a random division was repeated for every subject. Table 8.2(a) shows 
the average recognition rate of 10 simulations. Here 'Matrix (q = n)' means 
the following: When g = 2 for example, the image is converted to a matrix 
with 2 columns, the first column for the left part of the image and the second 
column for the right part. Hence in this case we can characterize the statistical 
dependence between the left and right parts of the face image. 

We repeated the same experiment for the PIE database [85] that consists of 
68 subjects. Here we focused only on the illumination variation and selected 
12 lighting conditions. Figure 8.3(b) shows one subject under these 12 illumi­
nation conditions. As PC A is known to be inadequate in handling illumination 
variation, we only considered LDA [44]. For comparison, we implemented the 
illumination subspace approach [144] that is physical-model-based and hence 
effective for modeling illumination variations. In [144], a separate linear sub-
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Figure 8.2. (a) Ten images of digit 'three', (b) The matrix KPCA along the column direction, 
(c) The matrix KPCA along the column and row directions. LLE visualization: (d) The original 
data, (e) The vector KPCA. (f) The matrix KPCA along the column direction, (g) The matrix 
KPCA along the column and row directions. 

i J i .i i .1 Ifc. . L, J '« . E I *,. J «.,.. J I.. .J (a) 
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Figure 8.3. (a) Images at different poses in the AT&T database, (h) Images under different 
illumination conditions in the PIE database. All images are downsampled to 12 x 12. 

space is learned for each subject. Table 8.2(b) presents the recognition rates for 
the PIE database. 

From Table 8.2, we make the following observations: 
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1 The matrix-based analysis almost always outperforms the vector-based anal­
ysis, highlighting the virtue of the matrix KPCA and matrix KLDA. 

2 The matrix KLDA consistently outperforms the matrix KPCA because the 
former is a supervised approach. 

3 Using more samples in the training set increases the recognition perfor­
mance. 

4 Kernel methods almost always outperforms their non-kernel counterparts. 

5 When dealing with the illumination variation, the matrix KLDA algorithm 
that is learning-based even outperforms, in small-sample cases, the illumi­
nation approach that is physical-model-based and needs more data to learn 
the model. 

Polynomial kernel 
(6»= l,(/ = 3) 

matrix KPCA {q = 4) 
matrix KPCA {q = 2) 
vector KPCA (q = 1) 

matrix KLDA (q = 4) 
matrix KLDA (q = 2) 
vector KLDA (q = 1) 

M = 2 
N = 8 

73.4±2.6 
7L2±3.1 
65,9±3,1 

73.6±2.5 
76.0±2.5 
76,0±3.0 

M = 3 
N = 7 

75.7±2.0 
72,4±L9 
68.5±2.5 

82.1±3.0 
83.9±3.7 
82.7±2.8 

M = 4 
iV = 6 

78.1±1.4 
75.9±2.4 
75.3±2.4 

87.4±3.0 
88.1 ±2.6 
87.5±3.2 

M = 5 
N = 5 

80.6±2.6 
78.3±2.9 
78.3±L8 

89.8±3.4 
92.0±2.9 
90.5±2.4 

(a) 

Polynomial kernel 
(0 = l ,d = 3) 

M = 2 
iV = 10 

M 
N 

= 4 M = 6 
= 8 N = 6 

M = 8 
AT = 4 

M = 10 
N = 2 

matrix KLDA (q = 2) 
vector KLDA {q = 1) 
vector LDA (q = 1) 

Illumination subspace 

55.4±2.1 
64.3±3.7 
49.2±3.7 
53.1±2.5 

82.6±2.4 
81.3±2.5 
66.1±3.5 
85.0±2.2 

93.0±1.5 
81.2±2.6 
74.8±1.9 
92.3±1.5 

96.5±1.5 
80.2±2.2 
80.0±3.3 
96.1±1.3 

98.2±1.1 
71.0±4.3 
83.6±2.7 
98.5±1.1 

(b) 

Table 8.2. Face recognition rates for (a) the AT&T database and (b) the PIE database. 



PART IV 

FACE TRACKING AND RECOGNITION FROM VIDEOS 



Chapter 9 

ADAPTIVE VISUAL TRACKING 

Particle filtering [179, 245, 248, 237, 6] is an inference technique [3, 20] 
for estimating the unknown motion state, 6t, from a noisy collection of ob­
servations, y^.j = {y^, •••,y(} arriving in a sequential fashion. A state space 
time series model is often employed to accommodate such a time series. As 
mentioned in Chapter 2, two important components of a time series are state 
transition and observation models. 

The state transition model characterizes the motion change between frames. 
In a visual tracking problem, it is ideal to have an exact motion model governing 
the kinematics of the object. In practice, however, approximate models are used. 
There are two types of approximations commonly found in the literature, (i) One 
is to learn a motion model directly from a training video [183, 189]. However 
such a model may overfit the training data and may not necessarily succeed 
when presented with testing videos containing objects arbitrarily moving at 
different times and places. Also one cannot always rely on the availability of 
training data, (ii) Secondly, a fixed constant-velocity model with fixed noise 
variance is fitted as in [174, 198, 208, 129]. 

et = et-i + ut + ^u (9.1) 
where vt is a constant velocity, i.e. vt = îO) and û  has a fixed noise variance 
of the form ut = ro * UQ with TQ a fixed constant measuring the extent of 
noise and UQ a 'standardized' random variable/vector Consider the scalar case 
for example. If uj is distributed as N(0,(T^), we can write U( = CTUQ where 
UQ is standard normal N(0,1). This also applies to multivariate cases. Since 
a constant ^j has difficulty in handling arbitrary movement, UQ is typically 
set to be 1̂0 = 0- If ''o is small, it is very hard to model rapid movements; 
if ro is large, it is computationally inefficient since many more particles are 
needed to accommodate the large noise variance. All these factors make such a 
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model ineffective. In this chapter, we overcome this by introducing an adaptive-
velocity model. 

While contour is the visual cue used in many tracking algorithms [183], 
another class of tracking approaches [180, 192, 129] exploits an appearance 
model kf. In its simplest form, we have the following observation equation. 
For the sake ofsimplicity, we denote: zt = T{Y^;6t},zf^ = T{yf,9f'},zt = 
T{y^, Of}. Also, we can always vectorize the 2-D image by a lexicographical 
scanning of all pixels and denote the number of pixels by d. 

zt = T{y^A]=kt+yu (9.2) 

where zj is the image patch of interest in the video frame y ,̂ parameterized 
by 9t. In [180], a fixed template, A( = AQ, is matched with observations to 
minimize a cost function in the form of sum of squared distance (SSD). This is 
equivalent to assuming that the noise vj is a normal random vector with zero 
mean and a diagonal (isotropic) covariance matrix. At the other extreme, one 
could use a rapidly changing model [192], say, kt = zt_i, i.e., the 'best' patch 
of interest in the previous frame. However, a fixed template cannot handle 
appearance changes in the video, while a rapidly changing model is susceptible 
to drift. Thus, it is necessary to have a model which is a compromise between 
these two cases. In [185], Jepson et. al. proposed an online appearance model 
(0AM) for a robust visual tracker, which is a mixture of three components. 
Two EM algorithms are used, one for updating the appearance model and the 
other for deriving the tracking parameters. 

Our approach to visual tracking is to make both observation and state tran­
sition models adaptive in the fi-amework of a particle filter, with provisions for 
handling occlusion. The main features of our tracking approach are as follows: 

• Appearance-based. The only visual cue used in our tracker is the 2-D ap­
pearance; i.e., we employ only image intensities, though in general features 
derived fl"om image intensities, such as the phase information of the filter 
responses [185] or the Gabor feature graph presentation [111], are also ap­
plicable. No prior object models are invoked. In addition, we only use gray 
scale images. 

• Adaptive observation model. We adopt an appearance-based approach. The 
original 0AM is modified and then embedded in our particle filter. There­
fore, the observation model is adaptive as the appearance kt involved in (9.2) 
is adaptive. 

• Adaptive state transition model. Instead of using a fixed model, we use an 
adaptive-velocity model, where the adaptive motion velocity ut is predicted 
using a first-order linear approximation based on the appearance difference 
between the incoming observation and the previous particle configuration. 
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We also use an adaptive noise component, i.e, uj = rt *uo, whose magnitude 
rt is a function of the prediction error. It is natural to vary the number of 
particles based on the degree of uncertainty rt in the noise component. 

• Handling occlusion. Occlusion is handled using robust statistics [11, 180, 
173]. We robustify the likelihood measurement and the adaptive velocity 
estimate by downweighting the 'outlier' pixels. If occlusion is declared, we 
stop updating the appearance model and estimating the motion velocity. 

This chapter is organized as follows. We examine the details of an adaptive 
observation model in Section 9.1.1, with a special focus on the adaptive ap­
pearance model, and of an adaptive state transition model in Section 9.1.2 with 
a special focus on how to calculate the motion velocity. Handling occlusion is 
discussed in Section 9.1.3, and experimental results on tracking vehicles and 
human faces are presented in Section 9.2. 

9.1 Appearance-Adaptive Models 
9.1.1 Adaptive observation model 

The adaptive observation model arises from the adaptive appearance model 
A(. We use a modified version of OAM as developed in [185]. The differences 
between our appearance model and the original OAM are highlighted below. 

Mixture appearance model 

The original OAM assumes that the observations are explained by different 
causes, thereby indicating the use of a mixture density of components. In the 
original OAM presented in [185], three components are used, namely the W-
component characterizing the two-frame variations, the S'-component depicting 
the stable structure within all past observations (though it is slowly-varying), 
and the L-component accounting for outliers such as occluded pixels. 

We modify the OAM to accommodate our appearance analysis in the fol­
lowing aspects, (i) We directly use the image intensities while they use phase 
information derived from image intensities. Direct use of image intensities is 
computationally more efficient than using the phase information that requires 
filtering and visually more interpretable. (ii) As an option, in order to further 
stabilize the tracker one could use an F-component which is a fixed template 
that one is expecting to observe most often. For example, in face tracking this 
could be just the facial image as seen from a frontal view. In the sequel, we 
derive the equations as if there is an F-component. However, the effect of this 
component can be ignored by setting its initial mixing probability to zero, (iii) 
We embed the appearance model in a particle filter to perform tracking while 
they use the EM algorithm, (iv) In our implementation, we do not incorporate 
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the L-component because we model the occlusion in a different manner (using 
robust statistics) as discussed in Section 9.1.3. 

We now describe the mixture appearance model. The appearance model at 
time t, 

At = {Wt,St,Ft}, 

is a time-varying one that models the appearances present in all observations up 
to time t — 1. It obeys a mixture of Gaussians, with Wj, Sj, Ft as mixture centers 
{l^i,t', i = w,s, / } and their corresponding variances {cfif, i = w,s, / } and 
mixing probabilities {nii^t', i = w, s, / } . Notice that 

{mi^t,l^i,t,crlt; i = w,s,f} 

are 'images' consisting of d pixels that are assumed to be independent of each 
other. 

In summary, the observation likelihood is written as 

d 

p{yt\Ot) = P{^t\0t) = Hi E mAJM^tij);^^^Aj)^^lt{m, (93) 

where N(a:; /x, a^) is a normal density 

n{x- M, a^) = (2^a2)-V2 e x p { - p ( ^ ^ - ^ ) } , p{x) = \x\ (9.4) 

Model update 

To keep the chapter self-contained, we show how to update the current ap­
pearance model At to A^+i after zj becomes available, i.e., we want to compute 
the new mixing probabilities, mixture centers, and variances for time i + 1, 

It is assumed that the past observations are exponentially 'forgotten' with 
respect to their contributions to the current appearance model. Denote the 
exponential envelop by a exp(—r~^(i ^ k)) for k < t, where r = n/j/ log 2, 
Uh is the half-life of the envelope in frames, and a = 1 — exp(—T~^) to 
guarantee that the area under the envelope is 1. We just sketch the updating 
equations as follows and refer the interested readers to [ 185] for technical details 
andjustifications. 

The expectation maximization (EM) algorithm [236] is invoked. Since we 
assume that the pixels are independent of each other, we can deal with each 
pixel separately. The following computation is valid for j = 1,2,.. . , d where 
d is the number of pixels in the appearance model. 
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First, the posterior responsibility probabilities are computed as 

Ot,t{j) oc TOj,f(j)N(zt(j); fii,tij), (rltXj)); i = w, s, f, k J2 ^iAJ) = 1-

(9.5) 
Then, the mixing probabilities are updated as 

rrii^t+iij) = a Oi^tU) + (1 - a) rm^tXj); i = w, s, / , (9.6) 

and the first- and second-moment images {Kp^t+i] P = !> 2} are evaluated as 

Mp,t+i(j) = a zP{j)o,,t.{j) + {l-a) Mp,t(i); p = 1, 2. (9.7) 

Finally, the mixture centers and the variances are updated as: 

o •̂> f, Mi,t+i(j) 2 f^ M2,f+l(j) 2 f, 

(9.8) 
Wt+i(j) = liw,t+iU) = ztU), (^i,t+i{j) = (^i,iU), (9.9) 

Ft+iij) = l^u+iij) = Fi(i), a%+iij) = 4i(j). (9.10) 

Model initialization 

To initialize Ai, we set Wi = Si = Fi = To (with TQ supplied by a detection 
algorithm or manually), {m,:j,a,?^; i = w,s,f}, and Mî i = nig^izo and 
M2,l =m. , , i c r2^+T§ . 

9.1.2 Adaptive state transition model 
The state transition model we use incorporates a term for modeling adaptive 

velocity. The adaptive velocity is calculated using a first-order linear prediction 
method based on the appearance differences between two successive frames. 
The previous particle configuration is incorporated in the prediction scheme. 

Construction of the particle configuration involves the costly computation of 
image warping (in the experiments reported here, it usually accounts for about 
half of the computations). In a conventional particle filtering algorithm, the 
particle configuration is used only to update the weight, i.e., computing weight 
for each particle by comparing the warped image with the online appearance 
model using the observation equation. But, our approach in addition uses 
the particle configuration in the state transition equation. In some sense, we 
'maximally' utilize the information contained in the particles (without wasting 
the costly computation of image warping) since we use it in both state and 
observation models. 

In [193], random samples are guided by deterministic search. Momentum 
for each particle is computed as the sum of absolute difference between two 
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frames. If the momentum is below a threshold, a deterministic search is first 
performed using a gradient descent method and a small number of offsprings 
is then generated using stochastic diffusion; otherwise, stochastic diffiision is 
performed to generate a large number of offsprings. The stochastic diffusion 
is based on a second-order autoregressive process. But, the gradient descent 
method does not utilize the previous particle configuration in its entirety. Also, 
the generated particle configuration could severely deviate from the second-
order autoregressive model, which clearly implies the need for an adaptive 
model. 

Adaptive velocity 

With the availability of the sample set Qt^ 1 = {^ii^}^! and the image 

patches of interest Zt-i = {z^_j}^^j, for a new observation y ,̂ we can predict 

the shifl in the motion vector (or adaptive velocity) vt = 0t — Ot^\ using a 
first-order linear approximation [172, 180, 186, 188], which essentially comes 
from the constant brightness constraint, i.e., there exists a 9t such that 

T{y^-9t}^h^i. (9.11) 

Approximating T{j^, 9t} using a first-order Taylor series expansion around 
Ot (we set 9t = 9t-i) yields 

T{y^; 9t} - T{Y,- 9t} + Ct{9t - 9t) = T{yf, 9t} + Cm, (9.12) 

where C( is the Jacobian matrix. 
Combining (9.11) and (9.12) gives 

zt^ic^T{yf,et}+Ctiyu (9.13) 

i.e., 
,,t = 0t-9t- -Bt(T{y,; et} - zt-i), (9.14) 

where Bj is the pseudo-inverse of the Ct matrix, which can be efficiently esti­
mated from the available data Qt-i and Zt^i. 

Specifically, to estimate Bt we stack into matrices the differences in motion 
vectors and image patches, using 9t-i and zt_i as pivotal points: 

SQt-i = [ C \ - ^t-i, . . . , 9ii\ - 9t^i], (9.15) 

SZt^i = [4'\ - zt-i, . . . , 4-1 ~ z<-i]- (9.16) 

The least square (LS) solution for Bj is 

Bt = {6Qt-iSzJ^,){6Zt^iSzJ_,)-\ (9.17) 
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However, it turns out that the matrix 5Zt~\6Zf._i is very often rank-deficient 
due to the high dimensionality of the data (unless the number of the particles at 
least exceeds the data dimension). To overcome this, we use the SVD as 

<52t_i = UAv""" (9.18) 

It can be easily shown that 

Bt = (5et_iVA"iu"''. (9.19) 

To gain some computational efficiency, we can further approximate 

Bt = 5et_iV,A-iuJ, (9.20) 

by retaining the top q components. Notice that if only a fixed template is used 
[ 186], the B matrix is fixed and pre-computable. But, in our case, the appearance 
is changing so that we have to compute the Bt matrix in each time step. 

In practice, one may run several iterations till zt = T{Y^\ 9t + i^t} stabilizes, 
i.e., the error ct defined below is small enough. 

e, = 0(z„ A,) = ^ E { E rn.Aj)pC'^'l~!^'^'h}- (9.21) 

In (9.21), et measures the distance between T{yf9t + ut} and the updated 
appearance model Aj. The iterations proceed as follows: We initially set 9} = 
9t-i- For the first iteration, we compute v^ as usual. For the A;*'' iteration, we 
use the predicted 9^ = 9f~^ + v^^^ as a pivotal point for the Taylor expansion 
in (9.12) and the rest of the calculation then follows. It is rather beneficial 
to run several iterations especially when the object moves very fast in two 
successive frames since 9t^i might cover the target in ŷ  in a small portion. 
After one iteration, the computed vt might be not accurate, but indicates a good 
minimization direction. Using several iterations helps to find vt (compared to 
9t~i) more accurately. 

We use the following adaptive state transition model 

9t = 9t-i+ut+nu (9.22) 

where vt is the predicted shift in the motion vector. The choice of ut is discussed 
below. One should note that we are not using (9.22) as a proposal function to 
draw particles, which requires using (2.11) to compute the particle weight. 
Instead we directly use it as the state transition model and hence use (2.8) to 
compute the particle weight. Our model can be easily interpreted as a time-
varying state model. 
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It is interesting to note that the approach proposed in [196] also uses motion 
cues as well as color parameter adaptation. Our approach is different from 
[196] in that: (i) We use the motion cue in the state transition model while they 
use it as part of observations; (ii) We only use the gray images without using 
the color cue which is used in [196]; and (iii) We use an adaptive appearance 
model which is updated by the EM algorithm while they use an adaptive color 
model which is updated by a stochastic version of the EM algorithm. 

Adaptive noise 
The value of ê  determines the quality of prediction. Therefore, if ej is small, 

which implies a good prediction, we only need noise with small variance to 
absorb the residual motion; if tt is large, which implies a poor prediction, we 
then need noise with large variance to model the potentially large jumps in the 
motion state. 

To this end, we use ut of the form û  = rj * UQ, where rt is a function of ej. 
Since et defined in (9.21) is a 'variance'-type measure, we use 

), (9.23) 

where rmin is the lower bound to maintain a reasonable sample coverage and 
Tmax is the upper bound to constrain the computational load. 

Adaptive number of particles 

If the noise variance rt is large, we need more particles, while conversely, 
fewer particles are needed for noise with small variance rt- Based on the 
principle of asymptotic relative efficiency (ARE) [3], we adjust the particle 
number Jt in a similar fashion, i.e., 

Jt = Jon/ro. (9.24) 

Fox [239] also presents an approach to improve the efficiency of particle 
filters by adapting the particle numbers on-the-fly. His approach is to divide the 
state space into bins and approximate the posterior distribution by a multinomial 
distribution. A small number of particles is used if the density is focused on a 
small part of the state space and a large number of particles if the uncertainty 
in the state space is high. In this way, the error between the empirical distribu­
tion and the true distribution (approximated as a multinomial in his analysis) 
measured by KuUback-Leilber distance is bounded. However, in his approach, 
since the state space (only 2D) is exhaustively divided, the number of particles 
is at least several thousand, while our approach uses at most a few hundred. 
Our attempt is not to explore the state space (6-D aflfine space) exhaustively, 
but only regions that have high potential for the object to be present. 
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Comparison between the adaptive velocity model and tlie zero velocity 
model 

We demonstrate the necessity of the adaptive velocity model by comparing 
it with the zero velocity model. Figure 9.1 shows the particle configurations 
created from the adaptive velocity model (with Jt < Jo and Tt < VQ computed 
as above) and the zero velocity model (with Jt = JQ and rt = TQ). Clearly, the 
adaptive-velocity model generates particles very efficiently, i.e, they are tightly 
centered around the object of interest so that we can easily track the object at 
time t; while the zero-velocity model generates more particles widely spread to 
explore larger regions, leading to unsuccessfiil tracking as widespread particles 
often lead to a local minimum. 

Tracking result at t - 1 Particle configuration at t Tracking result at t 

Figure 9.1. Particle configurations ft'om (top row) the adaptive velocity model and (bottom 
row) the zero-velocity model. 

9.1.3 Handling occlusion 
Occlusion is usually handled in two ways. One way is to use joint probabilis­

tic data associative filter (JPDAF) [2, 191]; and the other one is to use robust 
statistics [II]. We use robust statistics here. 

Robust statistics 

We assume that occlusion produces large image differences which can be 
treated as 'outliers'. Outlier pixels cannot be explained by the underlying pro­
cess and their influences on the estimation process should be reduced. Robust 
statistics provide such mechanisms. 

We use the p function defined as follows: 

p(x) 
\.^ 

¥ 
if 
if 

\x\ < c 
\x\ > c 

(9.25) 
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where x is normalized to have unit variance and the constant c controls the 
outlier rate. In our experiment, we take c = 1.435 based on experimental 
experience. If la;| > c is satisfied, we declare the corresponding pixel as an 
outlier. 

Robust likelihood measure and adaptive velocity estimate 

The likelihood measure defined in Eq. (9.3) involves a multi-dimensional 
normal density. Since we assume that each pixel is independent, we consider 
the one-dimensional normal density. To make the likelihood measure robust, 
we replace the one-dimensional normal density N(a;; /̂ , a^) by 

N(x; n, a^) = (27rcr2)-i/2 exp(-p(^: i -^) ) . (9.26) 
a 

Note that this is not a density function any more, but since we are dealing with 
discrete approximation in the particle filter, normalization makes it a probability 
mass fianction. 

Existence of outlier pixels severely violates the constant brightness constraint 
and hence affects our estimate of the adaptive velocity. To downweight the 
influence of the outlier pixels in estimating the adaptive velocity, we introduce a 
dxd diagonal matrix Lt with its i*'' diagonal element being Lt (i) = ri{xi) where 
Xi is the pixel intensity of the difference image {T{YI\ 9t] — i-t-i) normalized 
by the variance of the 0AM stable component and 

i d ^ ^ r 1 i / \x\<c 
'^ ' X dx \ c/\x\ if \x\>c ' ^ ' 

Eq. (9.14) becomes 

ut ^ -BtLt(T{yt; ^t_i} - zt_i). (9.28) 

This is similar in principle to the weighted least square algorithm. 

Occlusion declaration 

If the number of the outlier pixels in ẑ  (compared with the 0AM), say 
d„ut, exceeds a certain threshold, i.e., dout > Ad where 0 < A < 1 (we take 
A = 0.15), we declare occlusion. Since the OAM has more than one component, 
we count the number of outlier pixels with respect to every component and take 
the maximum. 

If occlusion is declared, we stop updating the appearance model and esti­
mating the motion velocity. Instead, we (i) keep the current appearance model, 
i.e., At+i =: A( and (ii) set the motion velocity to zero, i.e., vt = 0 and use the 
maximum number of particles sampled from the diffusion process with largest 
variance, i.e., n = r^ax, and Jt = Jmax-

The adaptive particle filtering algorithm with occlusion analysis is summa­
rized in Figure 9.2. 
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XnitiaWzi a sample set SQ = {SQ , ^/JO)}A'LI according to prior distrihutinn p{0o). 
Initialize the appearance model Ai. 
Set OCCFLAG = 0 to indicate no occlusion. 
Fort = 1 , 2 , . . . 

If (OCCFLAG = = O; 

Calculate tiie state estimate Ot ~ 1 by Eg. (2.9) or (2.10), the adaptive velocity i/t by Eq. 
(9.14), the noise variance rt by Eq. (9.23), and the particle number Jt by Eq. (9.24). 

Else 
ri = Tmax. Jt = Jmax, Vt = 0. 

End 
Forj == 1 ,2 , . . . , , / , , 

Draw the sample u) for ut with variance rt. 

Construct the sample B[^^ =§t-i^!yt-\- uj;̂ ^ tyy Eq. (9.22). 

Compute the tramformed image z^ . 

Update the weight using w[^^ =p(y/. |^!^^) ^ p{z[^^\e[^^). 
End 
NormnVize the weight using wj'' ~ w^'' / X ^ . ^ , w^ . 

Set OCCfj^AG according to the number of the outlier pixels in Zi. 

lUOGGFLAa==(^) 
Update the appearance model At+i using zt. 

End 
End 

Figure 9.2. The proposed visual tracking algoritlim witli occlusion handling. 

9.2 Experimental Results on Visual Tracking 
In our implementation, we used the following choices. We consider affine 

transformation only, i.e., the motion is depicted hy 6 = (ai, 02, as, a4, tx, ty) 
where {01,02,03,04} are deformation parameters and {tx,ty} denote the 2-
D translation parameters. Even though significant pose/illumincation changes 
are present in the video, we believe that our adaptive appearance model can 
easily absorb them and therefore for our purposes the affine transformation is 
a reasonable approximation. Regarding photometric transformations, only a 
zero-mean-unit-variance normalization is used to partially compensate for con­
trast variations. The complete image transformation T{y; ^} is implemented as 
follows: affine transform y using { oi, 02,03,04 }, crop out the region of interest 
at position {t^, ty} with the same size as the still template in the appearance 
model, and perform zero-mean-unit-variance normalization. 

We demonstrate our algorithm by tracking a disappearing car, a moving tank 
acquired by a camera mounted on a micro air vehicle, and a moving face under 
occlusion. Table 9.1 summarizes some statistics about the video sequences and 
the appearance model size used. 

We initialize the particle filter and the appearance model with a detector 
algorithm (we actually used the face detector described in [197] for the face 
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Video 

# of frames 
Frame size 

A( size 
Occlusion 

'adp' 
'fa' 
'fm' 
'fb' 

'adp & occ' 

Car 

500 
576x768 

24x30 
No 

0 

0 

X 

X 

0 

Tank 

300 
240x360 

24x30 
No 

0 

0 

x 
X 

0 

Face 

800 
240x360 

30x26 
Yes (twice) 

X 

X 

X 

X 

0 

Table 9.1. Comparison of tracking results obtained by particle filters with different configu­
rations. 'A( size' means pixel size in the component(s) of the appearance model, 'o' means 
success in tracking, 'x' means failure in tracking. 

sequence) or a manually specified image patch in the first fi^ame. TQ and JQ are 
also manually set, depending on the sequence. 

9.2.1 Car tracking 
We first test our algorithm to track a vehicle with the F-component but 

without occlusion analysis. The result of tracking a fast moving car is shown 
in Figure 9.3 (column 1). The tracking result is shovm with a bounding box. 
We also show the stable and wandering components separately (in a double-
zoomed size) at the comer of each frame. The video is captured by a camera 
mounted on the car. In this footage the relative velocity of the car with respect to 
the camera platform is very large, and the target rapidly decreases in size. Our 
algorithm's adaptive particle filter successfully tracks this rapid change in scale. 

Figure 9.4(a) plots the scale estimate (calculated as J{a\ + 03+03 + 04)72) 
recovered by our algorithm. It is clear that the scale follows a decreasing trend 
as time proceeds. The pixels located on the car in the final frame are about 12 
by 15 in size, which makes the vehicle almost invisible. In this sequence we 
set Jo ^ 50 and ro = 0.25. The algorithm implemented in a standard Matlab 
environment processes about 1.2 frames per second (with Jo = 50) running on 
a PC with a PHI 650 CPU and 512M memory. 

9.2.2 Object tracking in an aerial video 
Figure 9.5 shows our results on tracking a tank in an aerial video with de­

graded image quality due to motion blur. Also, the movement of the tank is very 
jerky and arbitrary because of platform motion, as seen in Figure 9.4(b) which 
plots the 2-D trajectory of the centroid of the tracked tank every 10 frames. 
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•irv* ""•!! .«?* 

Frame 1 

Frame 100 

Frame 300 

Frame 500 

Figure 9.3. The car sequence. Notice the fast scale change present in the video. Column 1: 
the tracking results obtained with an adaptive motion model and an adaptive appearance model 
('adp'). Column 2: the tracking results obtained with an adaptive motion model but a fixed 
appearance model ('fa'). In this case, the corner shows the tracked region. Column 3: the 
tracking results obtained with an adaptive appearance model but a fixed motion model ('fin'). 

covering from the left to the right in 300 frames. Although the tank moved 
about 100 pixels in column index in a certain period of 10 frames, the tracking 
is still successfiil. 

Figure 9.4(c) displays the plot of actual number of particles Jt as a function 
of time t. The average number of particle is about 83, where we set Jp to be 
100, which means that in this case we actually saved about 20% in computation 
by using an adaptive Jt instead of a fixed number of particles. 

To fiirther illustrate the importance of the adaptive appearance model, we 
computed the mean square error (MSE) invoked by two particle filter algorithms, 
one (referred as 'adp' in Section 9.2.4) using the adaptive appearance model 
and the other (referred as 'fa' in Section 9.2.4) using a fixed appearance model. 
Computing the MSE for the 'fa' algorithm is straightforward, with TQ denoting 
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so 

Snw 

150 
e- " X ' ' ' \ 

'^A, J 

^̂ Ho 
50 100 150 

(c) 

Figure 9.4. (a) The scale estimate for the car. (b) The 2-D trajectory of the centroid of the 
tracked tank. '*' means the starting and ending points and '.' points are marked along the 
trajectory every 10 frames, (c) The particle number ,//, against time t obtained when tracking 
the tank, (d) The MSE invoked by the 'adp' and 'fa' algorithms, (e) The scale estimate for the 
face sequence. 

Frame 116 Frame 228 Frame 300 

Figure 9.5. Tracking a moving tank in a video acquired by an airborne camera. 

the fixed template, 

MSEsa{t) = d~'Yl^zt{j)-MJ)f. (9.29) 
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Computing the MSE for the 'adp' algorithm is as follows: 

d 

MSEa,ip{t) = d-^Y.{ E m,4^tU) - f^^,t{j)f}• (9.30) 
j = l i—w,s,f 

Figure 9.4(d) plots the functions oiMSEfa{t) and MSEadpH). Clearly, using 
the adaptive appearance model invokes smaller MSE for almost all 300 frames. 
The average MSE for the 'adp' algorithm is 0.1394while that for the 'fa' algo­
rithm is 0.3169! Note that the range of MSE is very reasonable since we are 
using image patches after the zero-mean-unit-variance normalization not the 
raw image intensities. 

9.2.3 Face tracking 
We present one example of successful tracking of a human face using a hand­

held video camera in an office environment, where both camera and object 
motion are present. 

Figure 9.6 presents the tracking results on the video sequence featuring the 
following variations: moderate lighting variations, quick scale changes (back 
and forth) in the middle of the sequence, and occlusion (twice). The results are 
obtained by incorporating the occlusion analysis in the particle filter, but we did 
not use the F-component. Notice that the adaptive appearance model remains 
fixed during occlusion. 

Figure 9.7 presents the tracking results obtained using the particle filter with­
out occlusion analysis. We have found that the predicted velocity actually ac­
counts for the motion of the occluding hand since the outlier pixels (mainly 
on the hand) dominate the image difference (T{yj; Of] — ^t-i)- Updating the 
appearance model deteriorates the situation. 

Figure 9.4(e) plots the scale estimate against time t. We clearly observe a 
rapid scale change (a sudden increase followed by a decrease within about 50 
frames) in the middle of the sequence (though hard to display the recovered 
scale estimates are in perfect synchrony with the video data). 

9.2.4 Comparison 
We illustrate the effectiveness of our adaptive approach ('adp') by comparing 

the particle filter either with (a) an adaptive motion model but a fixed appearance 
model ('fa'), or with (b) a fixed motion model but an adaptive appearance model 
('fm'); or with (c) a fixed motion model and a fixed appearance model ('fb'). 
Table 9.1 lists the tracking results obtained using particle filters under the above 
situations, where 'adp & occ' refers to the adaptive approach with occlusion 
handling. Figure 9.3 also shows the tracking results on the car sequence when 
the 'fa' and 'fm' options are used. 
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l-'rarai; 1 I-'raiiie i45 Frame i4!J 

Fra!in;470 l-iaiiie 517 

Frame 685 Frame 695 Frame 800 

Figure 9.6. The face sequence. Frames 145, 148, and 155 show the first occlusion. Frames 
470 and 517 show the smallest and largest face observed. Frames 685, 690, and 710 show the 
second occlusion. 

/ V I V J S ^ ' f;}VjSSjff* 

Frame '. Frame 145 Frame 148 

m 

Frame 155 Frame 170 Frame 200 

Figure 9.7. Tracking results on the face sequence using the adaptive particle filter without 
occlusion analysis. 

Table 9.1 seems to suggest that the adaptive motion model plays a more 
important role than the adaptive appearance model since 'fa' always yields 
successful tracking while 'fm' fails, the reasons being that (i) the fixed motion 
model is unable to adapt to quick motion present in the video sequences, and 
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(ii) the appearance changes in the video sequences, though significant in some 
cases, are still within the range of the fixed appearance model. However, as 
seen in the videos, 'adp' produces much smoother tracking results than 'fa', 
demonstrating the power of the adaptive appearance model. 



Chapter 10 

SIMULTANEOUS TRACKING AND RECOGNITION 

Following [60], we define a still-to-video scenario: the gallery consists of 
still facial templates and the probe set consists of video sequences containing the 
facial region. Denote the gallery as ^ = {gi,g2, • • • ,gAr}, indexed by the iden­
tity variable n, which lies in a finite sample space A/" = {1,2 , . . . ,N}. Though 
significant research has been conducted on the still-to-still face recognition 
problem, research efforts on still-to-video recognition, are relatively fewer due 
to the following challenges [29] in typical surveillance applications: poor video 
quality, significant illumination and pose variations, and low image resolution. 
Most existing video-based recognition systems [103] attempt the following: 
the face is first detected and then tracked over time. Only when a frame sat­
isfying certain criteria (size, pose) is acquired, recognition is performed using 
still-to-still recognition technique. For this, the face part is cropped from the 
frame and transformed or registered using appropriate transformations. This 
tracking-then-recognition approach attempts to resolve uncertainties in tracking 
and recognition sequentially and separately. 

There are several unresolved issues in the tracking-then-recognition ap­
proach: criteria for selecting good frames and estimation of parameters for 
registration. Also, still-to-still recognition does not effectively exploit tempo­
ral information. A common strategy that selects several good frames, performs 
recognition on each frame and then votes on these recognition results for a final 
solution is rather ad hoc. 

To overcome these difficulties, we propose a tracking-and-recognition ap­
proach, which attempts to resolve uncertainties in tracking and recognition 
simultaneously in a unified probabilistic framework. To fuse temporal infor­
mation, the time series state space model is adopted to characterize the evolving 
kinematics and identity in the probe video. Three basic components of the model 
are: 
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• a motion equation governing the kinematic behavior of the tracking motion 
vector, 

• an identity equation governing the temporal evolution of the identity vari­
able, 

• an observation equation establishing a link between the motion vector and 
the identity variable. 

Using the SIS [179, 183, 237, 245, 248] technique, the joint posterior distribu­
tion of the motion vector and the identity variable, i.e., p{nt, 9t\y^y^). is esti­
mated at each time instant and then propagated to the next time instant governed 
by motion and identity equations. Note that here for notational convenience, 
e.g. in (10.5) and (10.6), we introduce in this chapter a dummy variable YQ. 
The marginal distribution of the identity variable, i.e.,p(nt|yQ. J , is estimated to 
provide a recognition result. An SIS algorithm is presented to approximate the 
distribution p(n(|yQ.j) in the still-to-video scenario. It achieves computational 
efficiency over its CONDENSATION counterpart by considering the discrete nature 
of the identity variable. 

It is worth emphasizing that (i) our model can take advantage of any still-
to-still recognition algorithm [44,47, 51, 64] by embedding distance measures 
used therein in our likelihood measurement; and (ii) it allows a variety of im­
age representations and transformations. Section 10.2.4 presents an enhance­
ment technique by incorporating the sophisticated appearance-based models in 
Chapter 9. The appearance models are used for tracking (modeling inter-frame 
appearance changes) and recognition (modeling appearance changes between 
video frames and gallery images), respectively. Table 10.1 summarizes the 
proposed approach and others, in term of using temporal information. 

Process Operation Temporal information 

Visual tracking 

Visual recognition 

Tracking-then-recognition 

Tracking-and-recognition 

Modeling the inter-frame 
differences 
Modeling the difference between 
probe and gallery images 
Combining tracking and 
recognition sequentially 
Unifying tracking and 
recognition 

Used in tracking 

Not applicable 

Used only in tracking 

Used in both tracking 
and recognition 

Table 10.1. Use of temporal information in various tracking/recognition processes. 

The organization of the chapter is as follows: Section 10.1 introduces the 
time series state space model for recognition and establishes the time-evolving 
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behavior of p(nt|yo.j). Section 10.1.3 briefly reviews the SIS principles from 
the viewpoint of a general state space model and develops a SIS algorithm 
to solve the still-to-video recognition problem, with special emphasis on its 
computational efficiency. Section 10.2 describes the experimental scenarios 
for still-to-video recognition and presents results using data collected at UMD, 
NIST/USF, and CMU (MoBo database) as part of the DARPA HumanID effort. 

10.1 Stochastic Models and Algorithms for Recognition 
from Video 

In this section, we present the details on the propagation model for recogni­
tion and discuss its impact on the posterior distribution of identity variable. 

10.1.1 Time series state space model 
Motion equation 

In its most general form, the motion model can be written as 

et = f{et^i,nty, t>i, (lo.i) 

where uj is noise in the motion model, whose distribution determines the motion 
state transition probability p{9t\0t-i). The flmction g(.,.) characterizes the 
evolving motion and it could be a function learned offline or given a priori. One 
of the simplest choice is an additive ftinction, i.e., 9t = 9t-i + ut, which leads 
to a first-order Markov chain. 

Choice of Ot is application dependent. Affine motion parameters are often 
used when there is no significant pose variation available in the video sequence. 
However, if a 3-D face model is used, then the 3-D motion parameters should 
be used accordingly. 

Identity equation 

nt = nt-i; t > 1, (10.2) 

assuming that the identity does not change as time proceeds. 

Observation equation 

By assuming that the transformed observation is a noise-corrupted version 
of some still template in the gallery, the observation equation can be written as 

zt=T{yt;et} = g^,+vt; t>l, (10.3) 

where v* is observation noise at time t, whose distribution determines the ob­
servation likelihood p(y(l Tit, dt), and Tjy^; 9t} is a transformed version of the 
observation y .̂ This transformation could be either geometric or photometric 
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or both. However, when confronting sophisticated scenarios, this model is far 
from sufficient. One should use the complicated likelihood measurement as 
shown in Section 10.2.2. 

We assume statistical independence between all noise variables and prior 
knowledge on the distributions p(0o|yo) ^^d p(no|yo). Using the overall state 
vector Xi = {nt,9f), Eq. (10.1) and (10.2) can be combined into one state 
equation (in a normal sense) which is completely described by the overall state 
transition probability 

p(x(|xi_i) = p{nt\nt-i)p{et\et-i) . (10.4) 

Given this model, our goal is to compute the posterior probability p{nt\jo.t). 
It is in fact a probability mass function (PMF) since nt only takes values from 
A/' = {1,2,..., N}, as well as a marginal probability of p(nt, ^t|yo.j), which is 
a mixed-type distribution. Therefore, the problem is reduced to computing the 
posterior probability. 

10.1.2 Posterior probability of identity variable 
The evolution of the posterior probability p(ntjyo.j) as time proceeds is very 

interesting to study as the identity variable does not change by assumption, i.e., 
p{nt\nt-i) = S{nt — rit-i), where 5{.) is a discrete impulse function at zero. 

Using time recursion, Markov properties, and statistical independence em­
bedded in the model, we can easily derive: 

P{nO:t,do:t\Yo:t) (10-5) 
MYMt,0t)p{nt\nt-.i)p{9t.\9t-i) 

P(n0:t-l ,6 '0:t-l |y0:t-l)-
p(ytlyo:t-i) 

= P[no,(io\Jo) ll 
s = l p(y.Jyo:..-i) 

= P(no|yoM^o|y„)n ^;^^^^^^^ • 

Therefore, by marginalizing over ^o:t and no-.t-i, we obtain 

Pin, = % o J = M%o) / . •. / PiOolYo) ri ^^'-^^yf'^^'^-'^O,... d^o. 
•'60 -Jet ^Jy PUsiyo-.s-i) 

(10.6) 
Thus p{nt = %o:t) 'S determined by the prior distribution p{no = 1\JQ) and 
the product of the likelihood functions, ns=i p{ys\^^ ^s)- If a uniform prior is 
assumed, then Yll^i piyjl, Oa) is the only determining factor. 

In the appendix, we show that, under some minor assumptions, the posterior 
probability for the correct identity I, p{nt = %o;t)' î  lower-bounded by an 
increasing curve which converges to 1. 
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To measure the evolving uncertainty remaining in the identity variable as 
observations accumulate, we use the notion of entropy [4]. In the context of 
this problem, conditional entropy H{nt\yQ.f) is used. However, the knowledge 
of p(yQ.j) is needed to compute H{nt\jQ.i). We assume that it degenerates to 
an impulse at the actual observations yg.j since we observe only this particular 
sequence, i.e.,p(yo.i) = (̂y,,̂ ^ - y,,^/). Thus, 

N 

H{nt\yo:t) = ~Y1 Pi^t\Yo:t)^og2p{nt\yau). (10.7) 
n t= l 

Under the assumptions listed in the appendix, we expect that i7(n(|yQ.() de­
creases as time proceeds since we start from an equi-probable distribution to a 
degenerate one. 

10.1.3 SIS algorithms and computational efficiency 
Consider a general time series state space model fully determined by (i) the 

overall state transition probability p{x(|xf^i), (ii) the observation likelihood 
p(yjxt), and (iii) prior probability p(xo) and statistical independence among 
all the noise variables. We wish to compute the posterior probability p(x(|yQ.j). 

If the model is linear with Gaussian noise, it is analytically solvable by a 
Kalman filter which essentially propagates the mean and variance of a Gaussian 
distribution over time. For nonlinear and non-Gaussian cases, an extended 
Kalman filter (EKF) and its variants have been used to arrive at an approximate 
analytic solution [1]. Recently, the SIS technique or particle filter algorithm, 
a special case of Monte Carlo method, [183, 237, 245, 248] has been used 
to provide a numerical solution and propagate an arbitrary distribution over 
time. However, since we are dealing with a mixed-type distribution, additional 
properties are available to be exploited when developing the SIS algorithms. 

First, two following two lemmas are usefiil. 

LEMMA 10.1 When n{x) is a PMF defined on afinite sample space, the proper 
sample set should exactly include all samples in the sample space. 

LEMMA 10.2 If a set of weighted random samples {{x(™),y(™\ui(™))}^^i 
is proper with respect to 7r(x, y), then a new set of weighted random sam­
ples {(/*'),w;'(''))}f^i, which is proper with respect to 7r(y), the marginal of 
TT{X, y), can be constructed as follows: 
1) Remove the repetitive samples from {ŷ ™) }„=! ^̂  obtain {y ^'^^ IfcLi- where 
all y ^''' 's are distinct; 
2) Sum the weight w^'"^' belonging to the same sample y ^^' to obtain the weight 
w'^''\ i.e., 

M 

w'^^^ = Y, u)(")(5(y<™) - y'̂ '̂ )) (10.8) 
•rn=\ 
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In the context of this framework, the posterior probability p(nt, ̂ t|yo:t) is 
represented by a set of indexed and weighted samples 

with rit as the above index. By Lemma 10.2, we can sum the weights of 
the samples belonging to the same index rit to obtain a proper sample set 
{nt, [in, }nt=i ^ ' th respect to the posterior PMF p{'nt\y^y^). 

A straightforward implementation of the particle filter algorithm (Figure 
10.1) for simultaneous tracking and recognition is not efficient in terms of its 
computational load. Since A/" = {1 ,2 , . . . , N) is acountable sample space, we 
need N samples for the identity variable rit according to Lemma 10.1. Assume 
that, for each identity variable nt, J samples are needed to represent 0t. Hence, 
we need M = J*N samples in total. Further assume that one resampling step 
takes Tr seconds (s), one predicting step Tp s, computing one transformed image 
Tt s, evaluating likelihood once T; ,s, one updating step T„, s. Obviously, the 
bulk of computation is J * Â  * (T^ + Tp+Tt + Ti) s to deal with one video frame 
as the computational time for the normalizing step and the marginalizing step is 
negligible. It is well known that computing the transformed image is much more 
expensive than other operations, i.e., Tj > > max(Tr,Tp,T/). Therefore, as the 
number of templates N grows, the computational load increases dramatically. 

initiaWze a sample set So — { ( I Q " , SQ , l)}m=i according to prior distributions 
P{no\ya)andp{0o\yo)-
Fort = 1,2, . . . 

F o r m = 1 , 2 , . . . , M 
Resample St-i = {{nf™:l,dl_i,wi_i)}^-i to obtain a new sample 

Predict a sample by drawing {n}"' , 8,'" ) from p(nt |n,_" ) andp{di\9f_^^ ) . 

Compute the transformed image z^ = T{yi; (?, }. 

Update the weight using a" = p(y/, |"( " > f̂ )• 
End 
Normalize each weight using wj = (^i /Ylm=i '^c • 
Marginalize over 0t to obtain the weight fin,, for nt. 

End 

Figure 10.1. The conventional particle filter algorithm for simultaneous tracking and recogni­
tion. 

There are various approaches in the literature to reduce the computational 
cost of the conventional particle filter algorithm. In [193], random particles 
are guided by deterministic search. Assumed density filtering approach [231], 
different from particle filter, is even more efficient. Those approaches are 
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general and do not explicitly exploit the special structure of the distribution in 
this setting: a mixed distribution of continuous and discrete variables. To this 
end, we propose the following algorithm. 

As the sample space J\f is countably finite, an exhaustive search of sample 
space hf is possible. Mathematically, we release the random sampling in the 
identity variable nt by constructing samples as follows: for each Ol , 

(l,^«,«;g), (2,e«,4^),..., (iV,̂ «,«;« ). 
We in fact use the following notation for the sample set, 

St = {{eff\u^\u^lJ^l...,ulf)^)U, (10.10) 
with Wj = Yl^.=i Wtn- ^^^ proposed algorithm is summarized in Figure 
10.2. 

Initialize a sample set So = {{dg ,N, 1,... 
pi9o\zo). 
Fort = 1,2, . . . 

For j = 1 ,2 , . . . , . / 
Resample St-i = {(e^i'i, w[i' 

Predict a sample by drawing (9/ ) from 

Compute ihe transformed image z^ = 
Forn = l , . . . ,Af 

Update the weight using a/l = W(_( 
End 

End 
Normalize each weight using w), „ 

Marginalize over 6i to obtain the weight ft 
End 

, l )} /=i 

)}) = ! 

pi9>\e^l 
r{y,Ae, 

n*V{Y,.\ 

iccording ti prior distribution 

'0 obtain a new sample 

„/w'i'\forn = l,2,...,N. 

). 
->}. 

nM^\ 

nt for nt. 

E' ^ afn and 

Figure 10.2, The computationally efficient particle filter algorithm for simultaneous tracking 
and recognition. 

The crux of this algorithm lies in the fact that, instead of propagating random 
samples on both motion vector and identity variable, we can keep the samples 
on the identity variable fixed and let those on the motion vector be random. 
Although we propagate only the marginal distribution for motion tracking, we 
still propagate the joint distribution for recognition purposes. 

The bulk of computation of the proposed algorithm is J * (T^ -\-Ty ~\-Tt) -\-
J * N * Ti s, a tremendous improvement over the conventional particle filter 
when dealing with a large database since the majority computational time J*Tt 
does not depend on N. 
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10.2 Still-to-Video Face Recognition Experiments 
In this section we describe the still-to-video scenarios used in our experiments 

and their practical model choices, followed by a discussion of experiments. 
Three databases are used in the still-to-video experiments. 

Database-0 was collected outside a building. Subjects walked straight to­
wards a video camera in order to simulate typical scenarios in visual surveil­
lance. Database-0 includes one face gallery, and one probe set. The images in 
the gallery are listed in Figure 10.3. The probe contains 12 videos, one for each 
individual. Figure 10.3 gives some frames in a probe video. 

In Database-1, we have video sequences with subjects walking in a slant 
path towards the camera. There are 30 subjects, each having one face template. 
There are one face gallery and one probe set. The face gallery is shown in 
Figure 10.4. The probe contains 30 video sequences, one for each subject. 
Figure 10.4 gives some example frames extracted from one probe video. As 
far as imaging conditions are concerned, the gallery is very different from the 
probe, especially in lighting. This is similar to the 'FC test protocol of the 
FERET test [60]. These images/videos were collected, as part of the HumanlD 
project, by National Institute of Standards and Technology and University of 
South Florida researchers. 

Database-2, Motion of Body (MoBo) database, was collected at the Carnegie 
Mellon University [105] under the HumanlD project. There are 25 different 
individuals in total. The video sequences show the individuals walking on a 
tread-mill so that they move their heads naturally. Different walking styles have 
been simulated to assure a variety of conditions that are likely to appear in real 
life: walking slowly, walking fast, inclining and carrying an object. Therefore, 
four videos per person and 99 videos in total (with one carrying video missing) 
are available. However, the probe set we use in this section includes only 25 
slowWalk v'ldQos.. Some example images of the videos (slowWalk) are shown 
in Figure 10.5. Figure 10.5 also shows the face gallery in Database-2 with face 
images in almost frontal view cropped from probe videos and then normalized 
using their eye positions. 

Table 10.2 summaries the features of the three databases. 

10.2.1 Results for Database-0 
We consider an affine transformation. Specifically, the motion is charac­

terized by 9 = {ai,a2,a'i,ai,tx,ty) where {ai, 02,03,04} are deformation 
parameters and {tx, ty} are 2-D translation parameters. It is a reasonable ap­
proximation since there is no significant out-of-plane motion as the subjects 
walk towards the camera. Regarding the photometric transformation, only 
zero-mean-unit-variance operator is performed to partially compensate for con­
trast variations. The complete transformation T{y; 9} is processed as follows: 
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Database 

No. of subjects 
Gallery 

Motion in probe 

Illumination variation 
Pose variation 

Database-Q 

12 
Frontal face 

Walking straight 
towards the camera 

No 
No 

Database-1 

30 
Frontal face 

Walking in an angle 
towards the camera 

Large 
Slight 

Database-2 

25 
Frontal face 

Walking 
on tread-mill 

No 
Large 

Table 10.2. Summary of three databases experimented. 

« & m 

Figure 10.3. Database-0. The 1st row: the face gallery with image size being 30 x 26. The 
2nd and 3rd rows: 4 example frames in one probe video with image size being 320 x 240 while 
the actual face size ranges approximately from 30 x 30 in the first frame to 50 x 50 in the last 
frame. Notice that the sequence is taken under a well-controlled condition so that there are no 
illumination or pose variations between the gallery and the probe. 

affine transform y using {ai, 02, a^, 04}, crop out the interested region at posi-
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Figure 10.4. Database-1. The 1st row: the face gallery with image size being 30 x 26. The 
2nd and 3rd rows: 4 example frames in one probe video with image size being 720 x 480 while 
the actual face size ranges approximately from 20 x 20 in the first frame to 60 x 60 in the last 
frame. Notice the significant illumination variations between the probe and the gallery. 

tion {tx, ty} with the same size as the still template in the gallery, and perform 
zero-mean-unit-variance operation. 

Prior distribution (̂6*0170) '̂  assumed to be Gaussian, whose mean comes 
from the initial detector and whose covariance matrix is manually specified. 

A time-invariant first-order Markov Gaussian model with constant velocity 
is used for modeling motion transition. Given the scenario that the subject is 
walking towards the camera, the scale increases with time. However, under 
perspective projection, this increase is no longer linear, causing the constant-
velocity model to be not optimal. However, experimental results show that as 
long as the samples of 9 can cover the motion, this model is sufficient. 
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m^ m 
1 

Figure 10,5. Database-2. The 1st row: the face gallery with image size being 30 x 26. The 2nd 
and 3rd rows: some example frames in one probe video (slowWalk). Each video consists of 300 
frames (480 x 640 pixels per frame) captured at 30 Hz. The inner face regions in these videos 
contain between 30 x 30 and 40 x 40 pixels. Notice the significant pose variation available in 
the video. 

The likelihood measurement is simply set as a 'truncated' Laplacian: 

PiivMuet) = Lap{\\T{y^;9t} - gj\i;ai,n) (10.11) 

where, ||.||i is sum of absolute distance, ai andAi are manually specified, and 

Lap{x;a,T) = < - i ) i ' ,. " . (10.12) 
\ a ^exp(-T) otherwise 

Gaussian distribution is widely used as a noise model, accounting for sensor 
noise, digitization noise, etc. However, given the observation equation: V( = 
T{yj; 9t} ~ g„j, the dominant part of v̂  becomes the high-frequency residual 
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if 9t is not proper, and it is well known that the high-frequency residual of 
natural images is more Laplacian-like. The 'truncated' Laplacian is used to 
give a 'surviving' chance for samples to accommodate abrupt motion changes. 

Figure 10.6 presents the plot of the posterior probability p(nt|yo.j), the con­
ditional entropy H{nt\jQ.i) ^^'^ ^^ minimum mean square error (MMSE) es­

timate of the scale parameter sc = J{a\ + a^ + ag + 04)72, all against t. In 
Figure 10.3, the tracked face is superimposed on the image using a bounding 
box. 

Suppose the correct identity for Figure 10.3 is I. From Figure 10.6, we can 
easily observe that the posterior probability p{nt = %o:t) increases as time 
proceeds and eventually approaches 1, and all others p{nt = j|yo;t) forj ¥" l 
go to 0. Figure 10.6 also plots the decrease in conditional entropy H{nt\yQ.i) 
and the increase in scale parameter, which matches with the scenario of a subject 
walking towards a camera. 

Table 10.3 summarizes the average recognition performance and computa­
tional time of the conventional and the proposed particle filter algorithm when 
applied to Database-0. Both algorithms achieved 100% recognition rate with 
top match. The proposed algorithm is much more efficient than the conven­
tional one. It is more than 10 times faster as shown in Table I. This experiment 
was implemented in C++ on a PC with P-IIIIG CPU and 512M RAM with the 
number of motion samples J chosen to be 200, the number of templates in the 
gallery Â  to be 12. 

Algorithm Conventional algorithm Efficient algorithm 

Recognition rate within top 1 match 100% 100% 
Time per frame 7s 0.5s 

Table 10.3. Recognition performance of algorithms when applied to Database-0. 

10.2.2 Results for Database-1 
Case 1: Tracking and Recognition using Laplacian Density 

We first investigate the performance using the same setting as described in Sec­
tion 10.2.1. In other words, we still use the aifine transformation, first-order 
Markov Gaussian state transition model, 'truncated' Laplacian observation like­
lihood, etc. 

Table 10.4 shows that the recognition rate is very poor, only 13% are correctly 
identified using top match. The main reason is that the 'truncated' Laplacian 
density is far from sufficient to capture the appearance difference between the 
probe and the gallery, thereby indicating a need for a different appearance mod-
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Figure 10.6. Posterior probability p(n(|yo.() against time i, obtained by the CONDENSATION 
algorithm (top left) and the proposed algorithm (top right). Conditional entropy H{ni\yg.^) 
(bottom left) and MMSE estimate of scale parameter sc (bottom right) against time t. The 
conditional entropy and the MMSE estimate are obtained using the proposed algorithm. 

eling. Nevertheless, the tracking accuracy is reasonable with 83% successfully 
tracked because we are using multiple face templates in the gallery to track the 
specific face in the probe video. After all, faces in both the gallery and the 
probe belong to the same class of human face and it seems that the appearance 
change is within the class range. To count the tracking accuracy, we manually 
inspect the tracking results by imposing the MMSE motion estimate on the final 
frame as shown in Figs. 10.3 and 10.4 and determine if tracking is successful 
or not for this sequence. This is done for all sequences and tracking accuracy 
is defined as the ratio of the number of sequences successfiilly tracked to the 
total number of all sequences. 

Case 2: Pure Tracking using Lapiacian Density 

In Case 2, we measure the appearance change within the probe video as well as 
the noise in the background. To this end, we introduce a dummy template To, 
a cut version in the first frame of the video. Define the observation likelihood 
for tracking as 

P2{Yt\0t) = Lap{\\T{Yt; Ot} - To||; <T2,T2), (10.13) 
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where CT2 and T2 are set manually. The other setting, such as motion parameter 
and model, is the same as in Case 1. We still can run the CONDENSATION algorithm 
to perform pure tracking. 

Table 10.4 shows that 87% are successfully tracked by this simple tracking 
model, which implies that the appearance within the video remains similar. 

Case 1 Case 2 Case 3 Case 4 Case 5 

Tracking accuracy 
Recognition w/in top 1 match 

Recognition w/in top 3 matches 

83% 
13% 
43% 

87% 
NA 
NA 

93% 
83% 
97% 

100% 
93% 
100% 

NA 
57% 
83% 

Table 10.4. Performances of algorithms when applied to Database-1. 

Case 3: Tracking and Recognition using Probabilistic Subspace Density 

As mentioned in Case 1, we need a new appearance model to improve the recog­
nition accuracy. As reviewed in Chapter 2, there are various approaches in the 
literature. We decided to use the approach suggested by Moghaddam et al. [57] 
due to its computational eflRciency and high recognition accuracy. However, 
in our implementation, we model only intra-personal variations instead of both 
intra/extra-personal variations for simplicity. 

We need at least two facial images for one identity to construct the intra-
personal space (IPS). Apart from the available gallery, we crop out the second 
image from the video ensuring no overlap with the frames actually used in probe 
videos. Figure 10.7 (top row) shows a list of such images. Compare with Figure 
10.4 to see how the illumination varies between the gallery and the probe. 

We then fit a probabilistic subspace density [58] on top of the IPS. It proceeds 
as follows: a regular PCA is performed for the IPS. Suppose the eigensystem 
for the IPS is {(A ,̂ ej)}^^^, where d is the number of pixels and Ai > ... > A .̂ 
Only top s principal components corresponding to top s eigenvalues are then 
kept while the residual components are considered as isotropic. We refer the 
reader to the original paper [58] for the full details. Figure 10.7 (middle row) 
shows the eigenvectors for the IPS. The density is written as follows: 

Q^^^W = ^. / . ^ t .1'/ H , , \<a-s,2)^ (10.14) 
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where â  (the i*'* principal component of x), ê  (the reconstruction error), and 
the coefficient p are defined as follows: 

s -, d 

It is easy to write the likelihood as follows: 

viiyMuet) = QIPs{T{Y^•et] - gj. (lo.is) 

Table 10.4 lists the performance by using this new likelihood measurement. 
It turns out that the performance is significantly better that in Case 1, with 93% 
tracked successfully and 83% recognized within top 1 match. If we consider 
the top 3 matches, 97% are correctly identified. 
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Figure 10.7. Database-1. Top row: the second facial images for estimating probabilistic den­
sity. Middle row: top 10 eigenvectors for the IPS. Bottom row: the facial images cropped out 
from the largest frontal view. 

Case 4: Tracking and Recognition using Combined Density 

In Case 2, we have studied appearance changes within a video sequence. In 
Case 3, we have studied the appearance change between the gallery and the 
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probe. In Case 4, we attempt to take advantage of both cases by introducing a 
combined likelihood defined as follows: 

PA{it\nuet)^vi{jtWuet)P2{yt\St) (10.16) 

Again, all other setting is the same as in Case 1. We now obtain the best 
performance so far: no tracking error, 93% are correctly recognized as the first 
match, and no error in recognition when top 3 matches are considered. 

Case 5: Still-to-still Face Recognition 

To make a comparison, we also performed an experiment on still-to-still face 
recognition. We selected the probe video frames with the best frontal face view 
(i.e. biggest frontal view) and cropped out the facial region by normalizing with 
respect to the eye coordinates manually specified. This collection of images 
is shown in Figure 10.7 (bottom row) and it is fed as probes into a still-to-still 
face recognition system with the learned probabilistic subspace as in Case 3. It 
turns out that the recognition result is 57% correct for the top one match, and 
83% for the top 3 matches. The cumulative match curves for Case 1 and Cases 
3-5 are presented in Figure 10.8. Clearly, Case 4 is the best among all. We 
also implemented the original algorithm by Moghaddam et al. [58], i.e., both 
intra/extra-personal variations are considered, the recognition rate is similar to 
that obtained in Case 5. 

10.2.3 Results for Database-2 
The recognition result for Database-2 is presented in Figure 10.8, using the 

cumulative match curve. We still use the same setting as in Case 1 of section 
10.2.2. However, due to the pose variations present in the database, using one 
frontal view is not sufficient to represent all the appearances under different 
poses and the recognition rate is hence not so high, 56% when only the top 
match is considered and 88% when top 3 matches are considered. We do not 
use probabilistic subspace modeling for this database because such modeling 
requires manually cropping out multiple templates for each individual. Also, 
pre-selecting video frames from the same probe video and ensuring that they 
do not overlap with the probe frames is time-consuming. What is desirable 
is to automatically select such templates from different sources other than the 
probe video. Since we have multiple videos available for one individual in 
Database-2, this motivates us to obtain more representative views for one face 
class, leading to the discussions in [124]. 

10.2.4 Enhanced results 
Visual tracking models the inter-frame appearance differences and visual 

recognition models the appearance differences between video frames and gallery 
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Figure 10.8. Cumulative match curves for Database-1 (left) and Database-2 (right). 

images. Simultaneous tracking and recognition provides a mechanism of jointly 
modeling inter-frame appearance differences and the appearance differences be­
tween video frames and gallery images. As in Section 10.2.2, this joint modeling 
of appearance differences in both tracking and recognition in one framework ac­
tually improves both tracking and recognition accuracies over approaches that 
separate tracking and recognition as two tasks. The more effective the model 
choices are, improved performance in tracking and recognition is expected. We 
explore this avenue by incorporating the models used in Chapter 9. 

We use the same adaptive-velocity motion model (9.22) and the same identity 
equation (10.2). The observation likelihood is modified to combine contribu­
tions (or scores) from both tracking and recognition in the likelihood yields the 
best performance in both tracking and recognition. 

To compute the tracking score Pa{yt\^t) which measures the inter-frame 
appearance changes, we use the appearance model introduced in Section 9.1.1 
and the quantity defined in (9.3) as Pa{jt\^t)-

To compute the recognition score which measures the appearance changes 
between probe videos and gallery images, we assume the same model as in 
(10.3), i.e., the transformed observation is a noise-corrupted version of some 
still template in the gallery, and the noise distribution determines the recognition 
score p„(yj|nt, 9t). We will physically define this quantity below. 

To fiilly exploit the fact that all gallery images are in frontal view, we also 
compute below how likely the patch zt is in frontal view and denote this score 
by p / (y J ^t). If the patch is in frontal view, we accept a recognition score; other­
wise, we simply set the recognition score as equiprobable among all identities, 
i.e., 1/A'̂ . The complete likelihood p(yj|n(, Of) is now defined as 

p{yt\'r^t,Ot)(y^Pa{pfPn + {i-pf)N ^}. (10.17) 

Model components in detail 
• A. Modeling inter-frame appearance changes 
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Inter-frame appearance changes are related to the motion transition model 
and the appearance model for tracking, which were explained in Sections 
9.1.1 and 9.1.2. 

• B. Being in frontal view 

Since all gallery images are in frontal view, we simply measure the extent 
of being frontal by fitting a probabilistic subspace (PS) density on the top 
of the gallery images [56, 58], assuming that they are IID samples from the 
frontal face space (FFS). Pfiyt\Ot) is written as follows: 

Pf{yt\St) = QFFs{^t), (10.18) 

where the density g{.) is defined same as that in(10.14)andzj = T{yf9t,}. 

• C. Modeling appearance changes between probe video frames and gallery 
images 

We adopt the MAP rule developed in [58] for computing the recognition 
score pn{yf\nt, 6t). Two subspaces are constructed to model appearance 
variations. The IPS is meant to cover all the variations in appearances 
belonging to the same person while the EPS is used to cover all the variations 
in appearances belonging to different people. More than one facial image 
per person is needed to construct the IPS. Apart from the available gallery, 
we crop out four images from the video ensuring no overlap with frames 
used in probe videos. The above PS density estimation method is applied 
separately to the IPS and the EPS, yielding two different eigensystems. The 
recognition score p„(yj |nt, Of) is finally computed as, assuming equal priors 
on the IPS and the EPS, 

Pn{.yt\nt,0i) = -7^ 7- — V T T T Tr IT'V ^^^-^^^ 
QipsyZ't - g„,) + QspsK^t - g„, j 

D. Proposed algorithm 

We adjust the particle number Jt based on the following considerations, (i) 
The first issue is same as (9.24) based on the prediction error, (ii) As shown 
above, the uncertainty in the identity variable nj is characterized by an entropy 
measure Ht iorp{nt\yi.f) andiJ t is a non-increasing function (under one weak 
assumption). Accordingly, we increase the number of particles by a fixed 
amount Jfi^ if Ht increases; otherwise we deduct Jfi^ from ,/(. Combining 
these two, we have 

Jt = J^l + Jfi, * (_i)^[^.-i<«.-2]}^ (10.20) 

where i[.l is an indication function. 
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InitiaWie a sample set So = {S^ ,WQ = 1/Jo)},!!^ according to prior distribution p(Bo). 
Set pQ^l — \JN. Initialize the appearance mode Ai. 
Fort = 1 , 2 , . . . 

Calculate the MAP estimate §1,-1, the adaptive motion shift Ui by Eq. (9.14), the noise 
variance rt by Eq. (9.23), and particle number Ji by Eq. (10.20). 

Forj = 1 , 2 , . . . , Jt 
Draw the sample uY for ut with variance Rt. 
Construct the sample Oy' hy Eq. (9.22). 

Compute the transformed image zl . 
Forl = 1,2,..., N 

Vpdate the weight using a['] = l}t-i,ip{yt\l,e[''>) = A_i, ip(z<^' | / ,6lp^) hy 
Eq. (10.17). 

End 
End 
Normalize the weight using ur^i — <*(';/ X^ • « j ; and compute urf' = ^ . wj j and 

Update the appearance model Ai^i using zt. 
End 

Figure 10.9. The visual tracking and recognition algorithm. 

The proposed particle filtering algorithm for simultaneous tracking and recog­
nition is summarized in Figure 10.9, where w^i is the weight of the particle 

q(.7) (i) {rit = l,9t = Of ) for the posterior density p(nt, ^ilyj.j); wj is the weight of 
the particle 6t = 0\^' for the posterior density p{Ot\Yi.t); ^'^'^ l^t,i '^ ^^e weight 
of the particle nt = I for the posterior density p{nt\yi.f). Occlusion analysis 
can also be included in Figure 10,9. 
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Figure 10.10. Row 1-3: the gallery set with 29 subjects in frontal view. Rows 4, 5, and 6: the 
top 10 eigenvectors for FFS, IPS, and EPS, respectively. 
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Experimental results on visual tracking and recognition 

We have applied our algorithm for tracking and recognition of human faces 
captured by a hand-held video camera in office environments. There are 29 
subjects in the database. Figure 10.10 lists all the images in the galley set 
and the top 10 eigenvectors for FFS, IPS, and EPS, respectively. Figure 10.11 
presents some frames (with tracking results) in the video sequence for 'Subject-
2' featuring quite large pose variations, moderate illumination variations, and 
quick scale changes (back and forth toward the end of the sequence). 

Frame 1 

Frame 690 

• ? • : 

,i'..i™Ha 
!-riijin; !fiO 

Frame 750 

i 

^ J 
m " 
Framo :'-)0 

Frame 800 

Figure 10.11. Example images in 'Subject-2' probe video sequence and the tracking results. 

Tracking is successful for all video sequences and 100% recognition rate 
is achieved, while early approaches fail to track in several video sequences 
due to its inability to handle significant appearance changes caused by pose 
and illumination variations. The posterior probabilities p{nt,\yi.f) with rit = 
1,2, ...A'' obtained for the 'Subject-2' sequence are plotted in Figure 10.12(a). 
We start from a uniform prior for the identity variable, i.e., p(no) = N~^ for 
no = 1,2, ...N. It is very fast, taking about less than 10 frames, to reach above 
0.9 level for the posterior probability corresponding to 'Subject-2', while all 
other posterior probabilities corresponding to other identities approach zero. 
This is mainly attributed to the discriminative power of the MAP recognition 
score induced by IPS and EPS modeling. The previous approach [129] usually 
takes about 30 frames to reach 0.9 level since only intra-personal modeling is 
adopted. Figure 10.12(b) captures the scale change in the 'Subject-2' sequence. 

10.3 Appendix 
Derivation of the lower bound for the posterior probability of identity 

Suppose that the following two assumptions hold: 



Simultaneous Tracking and Recognition 197 

0.9 

0.8 

So.? 

"O.fi 

S-0.5 

• |0 .4 

io.3 

0.2 

0.1 

. . ~S 

^ ^ , i i i > i i | 

i i 

J\\ , 
(a) (b) 

Figure 10.12. Results on the 'Subject-2' sequence, (a) Posterior probabilities against time t 
for all identities p(nt|yj.(), nt = 1,2,..., N. The line close to 1 is for the true identity, (b) 
Scale estimate against time t. 

(A) The prior probability for each identity is same, 

Pirn = JlYo) = i/N; jeJ\f, (10.21) 

(B) for the correct identity / e J\f, there exists a constant rj > I such that, 

p{yMt = l,Ot) > wijMt = j,et); t > 1, j e M,j ^ I. (10.22) 

Substitution of Eq. (10.21) and (10.22) into Eq. (10.6) gives rise to 

P{nt = l\jo:t) 

V Piy.s\n.,=j,Os)p{e.,\e,^i) 
•ho Jot fJi P{Y.s\yO:.s-l) 

d0t... d6'o 

(10.23) 

where ??* = ns=i V-
More interestingly, from Eq. (10.23), we have 

N 

(N - l)pint = l\Yo..t) > v' E P K = j | y o : i ) = ' ? * ( l - P K = %0:t)), 

(10.24) 
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i.e., 
p{nt = l\ya.,t)>h{'n,t), (10.25) 

where 

Eq. (10.25) has two implications. 

1 Since the fiinction h{ri, t) which provides a lower bound for p{nt = l\YQ-t) 
is monotonically increasing against time t, p{nt = %o:t) has a probable 
trend of increase over t, even though not in a monotonic manner. 

2 Since 77 > 1 andp(nt = %().t) < 1, 

lim p{nt = %o;t) = 1. (10.27) 

implying that p{nt = %0:t) degenerates in the identity I for some suffi­
ciently large t. 

However, all these derivations are based on assumptions (A) and (B). Though 
it is easy to satisfy (A), difficulty arises in practice in order to satisfy (B) for all 
the frames in the sequence. Fortunately, as we have seen in the experiment in 
Section 10.2, numerically this degeneracy is still reached even if (B) is satisfied 
only for most but not all frames in the sequence. 

More on assumption (B) 

A trivial choice for T] is the lower bound on the likelihood ratio, i.e., 

ri= inf ^ i ^ t * ^ ' . ' ' ; ; . (10.28) 
t>i,j/ZAsGp(yJnt =j,6't) 

This choice is of theoretical interest. In practice, how good is the assumption 
(B) satisfied? Figure 10.13 plots against the logarithm of the scale parameter, 
the 'average' likelihood of the correct identity, 

T7 IIp(gnl">^)' 
neN 

and that of the incorrect identities, 

^ ' m^iN,n^iN,m^n 

of the face gallery as well as the 'average' likelihood ratio, i.e., the ratio between 
the above two quantities. The observation is that only within a narrow 'band' the 
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condition (B) is well satisfied. Therefore, the success of SIS algorithm depends 
on how good the samples lie in a similar 'band' in the high-dimensional affine 
space. Also, the lower bound ry in assumption (B) is too strict. If we take the 
mean of the 'average' likelihood ratio shown in Figure 10.13 as an estimate 
of ?7 ( roughly 1.5 ), Eq. (10.25) shows that, after 20 frames, the probability 
P(%0:t) reaches 0.99! However, this is not reached in the experiments due to 
noise in the observations and incomplete parameterization of transformations. 

log of scale paramster log of scale parameter 

Figure 10.13. Left: The 'average' likelihood of the correct hypothesis and incorrect hypotheses 
against the log of scale parameter Right: The 'average' likelihood ratio against the log of scale 
parameter 



Chapter 11 

PROBABILISTIC IDENTITY CHARACTERIZATION 

Even though a lot of research has been carried out, state-of-the-art face 
recognizers still yield unsatisfactory results especially when confronted with 
pose and illumination variations. Another aspect is the nature of input to the 
face recognition system. While single-still-image based face recognition has 
been investigated for a long time, there is a growing trend of using multiple still 
images or video sequences as input. In addition, the recognizers are further 
complicated by the registration requirement as the images that the recognizers 
process contain transformed appearances of the object. Below, we simply use 
the term 'transformation' to model all the variations due to misregistration, or 
pose and illumination variations. 

In the literature, these covariants are treated rather independently. In this 
chapter, we propose a general framework called probabilistic identity charac­
terization to unify the different approaches to face recognition. The unified 
framework possesses the following features: 

• It processes either a single image or a group of images. Here a group of 
images include two types. In terms of the transformations embedded in the 
group or the temporal continuity between the transformations, the group can 
be either independent or not. Examples of the independent group (I-group) 
are face databases that store multiple appearances for one object. Examples 
of the dependent group are video sequences. If the temporal information is 
stripped, video sequences reduce to I-groups. In this chapter, whenever we 
mention video sequences, we mean dependent groups of images. 

• It handles the localization problem, illumination and pose variations. 

• The identify description could be either discrete or continuous. The contin­
uous identify encoding typically arises from subspace modeling. 



202 UNCONSTRAINED FACE RECOGNITION 

• It is probabilistic and integrates all the available evidence. 

In Section 11.1 we introduce the generic framework which provides a proba­
bilistic characterization of the object identity. In Section 11.2 we address issues 
and challenges arising in this framework. In Section 11.3 we focus on how 
to achieve an identity encoding which is invariant to localization, illumination 
and pose variations. In Section 11.3.2, we present some efficient computational 
methods. In Section 11.3.3, we present experimental results. 

11.1 Principle of Probabilistic Identity Cliaracterization 
Suppose a is the identity signature, which represents the identity in an 

abstract manner. It can be either discrete- or continuous- valued. If we 
have an A''-class problem, a is discrete taking value in {1,2, ...,iV}. If we 
associate the identity with image intensity or feature vectors derived from 
say subspace projections, a is continuous-valued. Given a group of images 
Ji-.T = {YI' y2' •••' YTI containing the appearances of the same but unknown 
identity, probabilistic identity characterization is equivalent to finding the pos­
terior probability p(a\yi.j')-

As the image only contains a transformed version of the object, we also 
need to associate it a transformation parameter 9, which lies in a transformation 
space O. The transformation space 6 is usually application dependent. Affine 
transformation is often used to compensate for the localization problem. To 
handle illumination variation, the lighting direction is used. If pose variation is 
involved, 3D transformation is needed or a discrete set is used if we quantize 
the continuous view space. 

We assume that the prior probability of a is ^{a), which is assumed to be, 
in practice, a non-informative prior. A non-informative prior is uniform in the 
discrete case and treated as a constant, say 1, in the continuous case. 

The key to our probabilistic identity characterization is as follows: 

= 7r(Q;) / p{Yi.'r\9i:T,a.)p{9i;T)dei;T 
•lei.r 

T 

= iT{a) j \\p{y^\eua)p{et\6i,t-i)dei..T, (11.1) 

where the following rules, namely (a) observational conditional independence 
and (b) chain rule, are applied: 

T 

(a)p(yi:Tl^i:T,a) = X{p{yf\9ua); (11.2) 
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T 

(b)p{ei.,T) = \{p{9t\9i.,t-i); v{0i\0a)=p{0i). (11.3) 
t=i 

Eq. (11.1) involves two key quantities: the observation likelihood p{j ^ \Ot,a) 
and the state transition probability p{0i\9i;t-i). The former is essential to a 
recognition task, the ideal case being that it possesses a discriminative power in 
the sense that it always favors the correct identity and disfavors the others; the 
latter is also very helpful especially when processing video sequences, which 
constrains the search space. 

We now study two special cases ofp{6t\0i;t-^i). 

11.1.1 Independent group (I-group) 
In this case, the transformations {9t\ t = 1 , . . . , T} are independent of each 

other, i.e. 

p{9t\ei..t-i)=p{0t). (11.4) 

Eq. (11.1) becomes 

T 

p(a|yi^y) (X 7r(a) \{ f p{yt\9t, a)p{9f)d9t. (11.5) 

In this context, the probability p(9t) can be regarded as a prior for 9t, which is 
often assumed to be Gaussian with mean 9 or non-informative. 

The most widely studied case in the literature is T = 1, i.e. there is only a 
single image in the group. Due to its importance, sometimes we will distinguish 
it from the I-group (with T > 1) depending on the context. We will present in 
Section 11.2 the shortcomings of many contemporary approaches. 

It all boils down to how to compute the integral in Eq. (11.5) in real appli­
cations. In the sequel, we show how to eificiently approximate it. 

11.1.2 Video sequence 
In the case of video sequence, temporal continuity between successive video 

frames implies that the transformations {9t; t = 1 , . . . , T} follow a Markov 
chain. Without loss of generality, we assume a first-order Markov chain, i.e. 

p{9t\9i.,t-i)=p{9t\9t-i). (11.6) 

Eq. (11.1) becomes 

T 

p(a|yi,r) (X 7r(a) /" \{p{jt\9ua)p{9t\9t^i)d9i.,T. (11.7) 
'J' t=\ 

The difference between Eq. (11.5) and Eq. (11.7) is whether the product 
lies inside or outside the integral. In Eq. (11.5), the product lies outside the 
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integral, which divides the quantity of interest into 'small' integrals that can be 
computed efficiently; while Eq. (11.7) does not have such a decomposition, 
causing computational difficulty. 

11.1.3 Difference from Bayesian estimation 
Our framework is very different from the traditional Bayesian parameter 

estimation setting, where a certain parameter /3 should be estimated from the 
i.i.d. observations {xi, X2,..., XT} generated from a parametric density p(xj/3). 
If we assume that P has a prior probability 7r(/3), then the posterior probability 
P(/3|XI:T) is computed as 

T 

P(/3|XI.T) « Tr^iMxi^Tl/S) = 7r(/3) np(xt | /3) (11.8) 

and used to derive the parameter estimate [3. One should not confuse our 
transformation parameter 9 with the parameter /3. Notice that (3 is fixed in 
p(x/;|/3) for different t's. However, each ŷ  is associates with a 6t. Also, a is 
different from P in the sense that a describes the identity and [3 helps to describe 
the parametric density. 

To make our framework more general, we can also incorporate the parameter 
(3 by letting the observation likelihood be p(y 10, a, /i). Eq. (11.1) then becomes 

P(a|yi:T) « 7r(a)p(yi.-rja) (11.9) 

- 7r(a) f p{y^.T\0i:T,a,P)pi<^i:T)niP)dOi.,Tdf3 

T 

= 7r(a) (\\p{y^\eua,(3)p{et\ev,t-i)AP)dei,Tdp, 
•' t = l 

where 6I-T and (3 are assumed to be statistically independent. In this chapter, 
we will focus only on Eq. (11.1) as if we already know the true parameter (3 in 
Eq. (11.9). This greatly simplifies our computation. 

11.2 Recognition Setting and Issues 
Eq. (11.1) lays a theoretical foundation, which is universal for all recognition 

settings: (i) recognition is based on a single image (an I-group with T = 1), 
an I-group with T > 2, or a video sequence; (ii) the identity signature is either 
discrete- or continuous-valued; and (iii) the transformation space takes into ac­
count all available variations, such as localization and variations in illumination 
and pose. 
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11.2.1 Discrete identity signature 
In a typical pattern recognition scenario, say an A/̂ -class problem, the identity 

signature for y^.j., a, is determined by the Bayesian decision rule: 

Q; = arg max piaW^.rp). (11.10) 

Usually P{Y\9, a) is a class-dependent density, either pre-specified or learned. 
This is a well studied problem and we will not focus on this. 

11.2.2 Continuous identity signature 
If the identity signature is continuous-valued, two recognition schemes are 

possible. The first is to derive a point estimate a (e.g. conditional mean, mode) 
from p{ct\yx-T) to represent the identity of image group y^.j-. Recognition is 
performed by matching a's belonging to different groups of images using a 
metric k{.,.). Say, di is for group 1 and d2 for group 2, the point distance 

ki;2 = k{ai,a2) 

is computed to characterize the difference between groups 1 and 2. 
Instead of comparing the point estimates, the second scheme directly com­

pares different distributions that characterize the identities for different groups 
of images. Therefore, for two groups 1 and 2 with the corresponding posterior 
probabilities p(ai) and p(0:2), we use the following expected distance [199] 

fci,2 = / / k{ai,a2)p{ai)p{a2)daida2-

Ideally, we wish to compare the two probability distributions using quantities 
such as the KuUback-Leibler distance [4]. However, computing such quantities 
is numerically prohibitive. 

The second scheme is preferred as it utilizes the complete statistical infor­
mation, while in the first one, point estimates use partial information. For 
examples, if only the conditional mean is used, the covariance structure or 
higher-order statistics is thrown away. However, there are circumstances when 
the first scheme makes sense: for instance, when the posterior distribution 
p(Q:|yj.y) is highly peaked or even degenerate at a. This might occur when (i) 
the variance parameters are taken to be very small; or (ii) we let T go to 00, i.e. 
keep observing the same object for a long time. 

11.2.3 Tlie effects of tlie transformation 
Even though recognition based on single images has been studied for a long 

time, most efforts assume only one alignment parameter 9 and compute the 
probability p{y\6,a). Any recognition algorithm computing some distance 
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measures can be thought of as using a properly defined Gibbs distribution. The 
underlying assumption is that 

p{e) = 5{e-9), (11.11) 

where 5{.) is an impulse function. Using Eq. (11.11), Eq. (11.5) becomes 

p(aly)«7r(a) f piy\0,a)6iO - e)de = Tv{a)p{y\0,a). (11.12) 
Je 

Incidentally, if the Laplace's method is used to approximate the integral (refer 
to the Appendix for detail) and the maximizer 0a = argrnaxg/p(y|0, a)p{0) 
does not depend on a, say 9a = 0, then 

(a) p{Y\e,a)p{0)d9 
Je 

~ 'K{a)p{j\0,a)p{0)^{2T:y/\3{9)\. (11.13) 

This gives rise to the same decision rule as implied by Eq. (11.12) and also 
partly explains why the simple assumption Eq. (11.11) can work in practice. 

The alignment parameter is therefore very crucial for a good recognition 
performance. Even a slightly erroneous 0 may affect the recognition system 
significantly. It is very beneficial to have a continuous density p{0) such as 
Gaussian or even a non-informative one since marginalization oip{0, a\y) over 
0 yields a robust estimate of p(a|y). 

In addition, our Bayesian framework also provides a way to estimate the best 
alignment parameter through the posterior probability: 

p{9\j) oc / p{y\0,a)'K{a)dc 
•la 

(11.14) 

11.2.4 Asymptotic behaviors 
When we have an I-group or a video sequence, we are often interested in dis­

covering the asymptotic (or large-sample) behaviors of the posterior distribution 
p{a\y^.rp) when T is large. In [129], the discrete case of a in a video sequence 
is studied. However it is very challenging to extend this study to a continuous 
case. Experimentally (refer to Section 11.3.3), we find that ̂ (alyi.j.) becomes 
more and more peaked as N increase, which seems to suggest a degenerancy 
in the true value atme-

11.3 Subspace Identity Encoding 
The main challenge is to specify the likelihood p{y\0, a). Practical consid­

erations require that (i) the identity encoding coefficient a is compact so that 
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our target space where a resides is of low dimensional; and (ii) a should be 
invariant to transformations and tightly clustered so that we can safely focus on 
a small portion of the spaces. 

Inspired by the popularity of subspace analysis, we assume that the observa­
tion y can be well explained by a subspace, whose basis vectors are encoded in 
a matrix denoted by B, i.e. there exists linear coefficient a such that y ~ Ba. 
Clearly, a naturally encodes the identity. However, the observation under the 
transformation condition (parameterized by 9) deviates from the canonical con­
dition (parameterized by say 9) under which the B matrix is defined. To achieve 
an identity encoding that is invariant to the transformation, there are two possi­
ble ways. One way is to inverse-warp the observation y from the transformation 
condition 9 to the canonical condition 9 and the other way is to warp the basis 
matrix B from the canonical condition 9 to the transformation condition 9. In 
practice, inverse-warping is typically difficult. For example, we cannot easily 
warp an off-frontal view to a frontal view without explicit 3D depth information 
that may not be available. Hence, we follow the second approach, which is also 
known as analysis-by-synthesis approach. We denote the basis matrix under 
the transformation condition 0 by B51. 

11.3.1 Invariant to localization, illumination, and pose 
The localization parameter, denoted by e, includes the face location, scale 

and in-plane rotation. Typically, an affine transformation is used. We absorb 
the localization parameter e in the observation using T{y; e}, where the T{.; e} 
is a localization operator, extracting the region of interest and normalizing it to 
match with the size of the basis. 

The illumination parameter, denoted by A, is a vector specifying the illumi-
nant direction (and intensity if required). The pose parameter, denoted by w, is a 
continuous-valued random variable. However, practical systems [73, 76] often 
discretize this due to the difficulty in handling 3D to 2D projection. Suppose the 
quantized pose set is { 1 , . . . , V^}. To achieve pose invariance, we concatenate 
all the images [76] {y i , . . . , y^} under all the views and a fixed illumination 
A to form a high-dimensional vector Ŷ  = [y^''^,..., y '̂'̂ ] . To ftirther achieve 
invariance to illuminations, we invoke the Lambertian reflectance model, ignor­
ing shadow pixels. Now, A is actually a 3-D vector describing the illuminant. 
We now follow Chapter 5 to perform a bilinear analysis; the results of which 
are summarized below. 

Since all y^ 's are illuminated by the same A, the Lambertian model gives, 

Y^=WA. (11.15) 
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Following [95], we assume that 

va 

W = ^ a i W i , (11.16) 
i=l 

and we have 
m 

Ŷ  = ^ a A A , (11.17) 
i = l 

where W '̂s are illumination-invariant bilinear basis and a = [ a i , . . . , am] 
provides an illuminant-invariant identity signature. Those bilinear basis can be 
easily learned as shown in [214, 94]. Thus a is also pose-invariant because, for 
a given view v, we take the part in Y corresponding to this view and still have 

m 

In summary, the basis matrix hg for 6 = {s,\,v) with e absorbed in y is 
expressed as BA,„ = [W^A,... jWĵ A]. 

We focus on the following likelihood: 

P(y|^) = p(y|e,A,i;,a) 
= Z^^^_„exp{^d(r{y;6},BA,.a)}, (11.19) 

where D(y, Bga) is some distance measure and 1\v,a is the so-called partition 
function which plays a normalization role. In particular, if we take d as 

d(r{y; £}, BA,„a) = (T{y; e) ^ BA,„a)''"s~i(T{y; e) - BA,^a)/2, (11.20) 

with a given S (say T, = a'^1 where I is an identity matrix), then Eq. (11.19) be­
comes a multivariate Gaussian and the partition function Zx^v,o. does not depend 
on the parameters any more. However, even though Eq. (11.19) is a multivariate 
Gaussian, the posterior distribution ^(alyi;^) is no longer Gaussian. 

11.3.2 Computational issues 
The integral 

If the transformation space G is discrete, it is easy to evaluate the integral 
!Q p(y |0, a)p{9)d9, which becomes a sum. Note that here we drop the subscript 
[.]t notation as this is a general treatment. If Q is continuous, in general, 
computing integral /gp(y|6', a)p{9)d9 is a difficult task. Many techniques are 
available in the literature. Here we mainly focus on two techniques: Monte 
Carlo simulation [14, 16] and Laplace's method [16, 210]. 

Monte Carlo simulation. The underlying principle is the law of large number 
(LLN). If{x(^),x(^),... ,x(^)}areiiriID samples drawn from the densityp(x). 
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for any bounded function h{-x.), 

1 ^ r 
^ ™ ^ ] ^ E ^ ( ^ ^ ' ^ ) = y /^(xMx)dx = Ep[/i]. (11.21) 

/ c — 1 

Alternatively, when drawing i.i.d. samples from p(x) is difficult, we can use 
importance sampling [14, 16]. Suppose that the importance function q{x) has 
i.i.d. realizations {x(^),x(^),... ,x(^)}. Thepdfp(x) can be represented by a 
weighted sample set {(x '̂̂ ), Wp )}^^i, where the weight for the sample x̂ '̂ ) is 

« ; f = p ( x W ) / g ( x W ) , (11.22) 

in the sense that for any bounded function /i(x). 

lim f ;4 '=) / , (xW) = ^ ^ M x ( ' = ) ) = E , [ / . ] . (11.23) 

Laplace's method [16, 210]. The general approach of this method is pre­
sented in Appendix. This is a good approximation to the integral only if the 
integrand is uniquely peaked and reasonably mimics the Gaussian function. 

In our context, we use importance sampling (or IID sampling if possible) for 
e and the Laplace's method for A and enumerate v. We draw i.i.d. samples 
{e'^^\e^'^\ ... ,£^^^} fromq'(£) and, for each sample e^''), compute the weight 
w^{k) ~ p{e^'''>)/q{e^'^^). If the i.i.d. sampling is used, the weights are always 
ones. Putting things together, we have (assuming n{a) is a non-informative 
prior) 

p{a\y) oc / p{y\e, X,v,a)p{E)p{X)p{v)dedXdv 
•le,\v 

1 ^ 1 ^ 

k=l v=l 

pCK(^),v,a)yJi'^^y/\JiKi^),v,a)l (11-24) 

where X^k y „ is the maximizer 

\('=),-i;,a = argminp(y|£(''\A,w,a)p(A), (11.25) 

r is the dimensionality of A, and ^(Xs^y^a) 's a properly defined matrix. Refer 
to Appendix for computing Xe,v,a and 3(Xe^v,a) if the likelihood is given as Eq. 
(11.19) and Eq. (11.20) and a non-informative prior p(A) is assumed. Similar 
derivations can be conducted for an I-group of observations y^.^,. 
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The distances k and k 

To evaluate the expected distance k, we use the Monte Carlo method. In our 
context, the target distribution is p{a\yi.j). Based on the above derivations, 
we kxiow how to evaluate the target distribution, but not to draw sample from 
it. Therefore, we use importance sampling. Other sampling techniques such as 
Monte Carlo Markov chain [14, 16] can also be applied. 

Suppose that, say for group 1, the importance ftmction isq\{ai), and weighted 

sample set is {aj , Wj }(_] ,̂ the expected distance is approximated as 

^1 ,2 - - 7 SYTTT m • (11-26) 
2_,i=i ^1 z-.i=i w 

U) 

The point distance is approximated as 

.,(')..(') v-^ . ,„y)̂ C') 
'"''^'^''^ ~r „(,) ' ^ j ^^U) )• (11-27) 

ELIW^'' ' E^iw'o 

11.3.3 Experimental results 
We use the 'ilium' subset of the PIE database [85] in our experiments. This 

subset has 68 subjects under 21 illumination configurations and 13 poses. Out 
of the 21 illumination configurations, we select 12 of them denoted by F, 

F = {/i6, / i 5 , / i 3 , /21, / i2 , / i i , /08, /06, / lo , /18, /o4, /02}, 

which typically span the set of variations. Out of the 13 poses, we select 9 of 
them denoted by C, 

C = {C22,C02,(^37,C05,C27,C29,CU,C14,C34}, 

which cover from the left profile to the frontal to the right profile. In total, we 
have 68 * 12 * 9 = 7344 images. Fig 5.2 displays one PIE object under the 
illumination and pose variations. 

We randomly divide the 68 subjects into two parts. The first 34 subjects are 
used in the training set and the remaining 34 subjects are used in the gallery 
and probe sets. It is guaranteed that there is no identity overlap between the 
training set and the gallery set. 

During training, the images are pre-preprocessed by aligning the eyes and 
mouth to desired positions. No flow computation is carried on for further 
alignment. After the pre-processing step, the used face image is of size 48 by 
40, i.e. d = 48 * 40 = 1920. Also, we only study gray images by taking the 
average of the red, green, and blue channels of their color versions. 

The training set is used to learn the basis matrix Bg or the bilinear basis W '̂s. 
As mentioned before, 6 includes the illumination direction A and the view pose 
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V, where A is a continuous-valued random vector and w is a discrete random 
variable taking values in { 1 , . . . , y } with p = 9 (corresponding to C). 

The images belonging to the remaining 34 subjects are used in the gallery 
and probe sets. The construction of the gallery and probe sets conforms the 
following: To form a gallery set of the 34 subjects, for each subject, we use an 
I-group of 12 images under all the illuminations under one pose Vp, to form a 
probe set, we use I-groups under the other pose Vg. We mainly concentrate on 
the case with Vp ^ Vg. Thus, we have 9 * 8 = 72 tests, with each test giving 
rise to a recognition score. The 1-NN (nearest neighbor) rule is applied to find 
the identity for a probe I-group. 

During testing, we no longer use the pre-processed images and therefore the 
unknown transformation parameter includes the aflfine localization parameter, 
the light direction, and the discrete view pose. The prior distribution p{et) is 
assumed to be a Gaussian, whose mean is found by a background subtraction 
algorithm and whose covariance matrix is manually specified. We use i.i.d. 
sampling fromp(£i) since it is Gaussian. The metric fc(.,.) actually used in our 
experiments is the correlation coefficient: 

fc(x,y) = {(xfy)2}/{(xTx)(yTy)}. 

Figure 11.1 shows the marginal posterior distribution of the first element a^ 
of the identity variable a, i.e., p{a^\yi.j,), with different iV's. From Figure 
11.1, we notice that (i) the posterior probability p{ct^\yi.T) has two modes, 
which might fail those algorithms using the point estimate, and (ii) it becomes 
more peaked and tightly-supported as T increases, which empirically supports 
the asymptotic behavior mentioned in Section 11.2. 

Figure 11.2 shows the recognition rates for all the 72 tests. In general, 
when the poses of the gallery and probe sets are far apart, the recognition rates 
decrease. The best gallery sets for recognition are those in frontal poses and 
the worst gallery sets are those in profile views. These observation are similar 
to those made in Chapter 5. 

For comparison. Table 11.1 shows the average recognition rates for four 
different methods: our two probabilistic approaches using k and k, respectively, 
the PCA approach [64], and the statistical approach [ 118] using the KL distance. 
When implementing the PCA approach, we learned a generic face subspace 
from all the training images, stripping their illumination and pose conditions; 
while implementing the KL approach, we fit a Gaussian density on every I-
group and the learning set is not used. Our approaches outperform the other two 
approaches significantly due to the transformation-invariant subspace modeling. 
The KL approach [118] performs even worse than the PCA approach simply 
because no illumination and pose learning is used in the KL approach while the 
PCA approach has a learning algorithm based on image ensembles taken under 
different illuminations and poses (though this specific information is stripped). 
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Figure 11.1. The posterior distributions p(ci^\ji.'i') with different T's: (a) p (a ' | y j ) ; (b) 
p(a'^ly^.g); and (c) ^(a ' ly j . j j ) , and (d) the posterior distribution p(u|yi.i2)- Notice that 
p{a^ |yi JO h^s two modes and becomes more peaked as T increases. 

Method PCA KL[118] 

Rec. Rate (top 1) 
Rec. Rate (top 3) 

82% 
94% 

76% 
91% 

36% 
56% 

6% 
15% 

Table 11.1. Recognition rates of different methods. 

As earlier mentioned in Section 11.2.3, we can infer the transformation pa­
rameters using the posterior probability ^{^iyi:^)- Figure 11.1 also shows the 
obtained p(w|y^.j2) for one probe I-group. In this case, the actual pose is u = 5 
(i.e. camera C27), which has the maximum probability in Figure 11.1(d). Simi­
larly, we can find an estimation for e, which is quite accurate as the back ground 
subtraction algorithm already provides a clean position. 

11.4 Appendix 

Laplace's method 

We are interested in computing the following integral H lp{9)de, for 

(^ = [&i,(^2, • • • ,Sr] e 'R-^- Suppose that 6 is the maximizer of p{d) or 



Probabilistic Identity Characterization 213 

Figure 11.2. The recognition rates of all tests, (a) Our method based on k. (b) Our method 
based on k. (c) The PCA approach [64]. (d) The KL approach. Notice the different ranges of 
values for different methods and the diagonal entries should be ignored. 

equivalently \ogp{9) which satisfies 

dp{0), 
0 or 

d log p{9) 
0. 

80 '" ""• d0 

We expand logp(^) around 9 using a Taylor series: 

iogp{0) ~ logp(^) -\{e- e*)^j{e){e - e) 

where i{0) is an r x r matrix whose if^ element is 

d'^\ogp{Q) 
hAO) dOidOi 

(11.28) 

(11.29) 

(11.30) 

Note that the first-order term in Eq. (II.29) is zero by virtue of Eq. (11.28). 
\f p{9) is a pdf function with parameter 9, then J(0) is the famous Fisher 
information matrix [16]. Substituting Eq. (11.29) into H = intp{9)d6 gives 

H =. p(9)leM-\ {9-ey 3{d){9 - 9)}d9 

p{9)^{2ny/\m\ (11.31) 
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About \e,v,oi. 

If a non-information prior p( A) is assumed, the maximizer \e,v,a satisfies 

K,v,a = argmaxp(y|£:, A,w,a) (11.32) 
A 

= arg m|n(T{y; e} - BA,,;a) {T{y; e] - BA,„a) 

= argminL(e, w, A,a) 

where L(e,u, A,Q;) = (T{y;e} ~ B^ îja) (T{y;£} - 3^,,;^). If a Gaussian 
prior is assumed, a similar derivation can be carried. 

Using the fact that 

m. 
BA,„a = [Wl̂ A,. . .Xm>^]a = B„,„A; B„,„ = ^ ^ a,W^̂  (11.33) 

i=l 

The term L{e, v, A, a) becomes 

L(e, V, A, a) = (r{y; e} - B„,^A)'''(T{y; e} - B„,̂ ,A), (11.34) 

which is quadratic in A. The optimum XE,v,a is unique and its value is 

^e,v,a = {^a,v ^a,v) ^a,v J = ^a,v "^{j', s}• (11.35) 

where [.]''' is the pseudo-inverse. Substituting Eq. (11.35) into L{e,v,\,a) 
yields 

L(£,D,A,,„,„,a) =T{y;£}'^(Jrf-B„,„B„,„t)T,{y}. (11.36) 

It is easy to show that J (A) is no longer a function of A and equals to 

J = a~^B„^jB„^,,. (11.37) 
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Chapter 12 

SUMMARY AND FUTURE RESEARCH DIRECTIONS 

12.1 Summary 
This monograph addressed several approaches for unconstrained face recog­

nition from three aspects. The first aspect is to directly model illumination and 
pose variations. The second aspect is to use nonlinear kernel learning to charac­
terize the face appearance manifold. The third aspect is to perform recognition 
using video sequences. 

We summarize some of the major concepts made in the book: 

• The general theory of symmetric SFS in Chapter 3 incorporates the lateral 
symmetric cue into an SFS problem. By doing this, we derived a unique 
solution of both shape and albedo. We also showed the use of self-ratio 
image in robust estimation of illumination direction and the extensions of 
symmetric SFS and applications of symmetry cue for image synthesis and 
view-synthesis efface images. 

• In the generalized photometric stereo approach presented in Chapter 4, we 
proposed a rank constraint on the product of albedo and surface normal 
that provides a very compact yet efficient encoding of the identity. In the 
literature, usually two separate linear subspaces [46,72] are constructed for 
shape and texture, respectively, assuming the independence between them. 
This assumption might result in an overfit for the problem [94]. 

By using the integrability and symmetry constraints, we designed a lin­
earized algorithm that recovers the class-specific albedos and surface nor­
mals under the most general and hence most difficult setting, i.e., the ob­
servation matrix consists of diiferent objects under different illuminations. 
In particular, this algorithm takes into account the effect of varying albedo 
field in the integrability term. 
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• The illuminating light field approach in Chapter 5 is image-based and re­
quires no explicit 3D model. It is computationally efficient and able to deal 
with images of small size. In contrast, the 3D model-based approach [72] 
is computationally intense and needs image of large size. 

• In Chapter 6, age estimation is solved using a regression algorithm based 
on boosting to select relevant features from the image. Since the regressor 
does not depend the training data, it is efficient in both storage and com­
putation. An efficient training algorithm that performs incremental feature 
selection was also presented. For face recognition across aging progression, 
we had proposed two approaches to studying facial similarity across time. 
The method proposed in this chapter, is very relevant to applications such 
as renewal of passports. During renewal of passports, the age difference be­
tween the image pairs is known a priori. Given a pair of age-separated face 
images of an individual, the age diiference classifier establishes the identity 
between the image pairs and further classifies them to their corresponding 
age difference category. Moreover, the similarity scores computed between 
two images of an individual when compared with the scores tabulated in 
Table 6.4 of help in identifying outliers, if any. 

• Computing the probabilistic distance measures (e.g. the Chemoff distance, 
the Bhatacharyya distance, the KL distance, and the divergence distance) 
between two Gaussian densities in the RKHS is presented in Chapter 7. 
Since the RKHS might be infinite-dimensional, we derive a limiting dis­
tance which can be easily computed. This leads to a novel paradigm for 
studying pattern separability, especially for visual pattern lying in a nonlin­
ear manifold. 

• Chapter 8 presented two matrix-based kernel subspace methods: matrix 
KPCA and matrix KLDA. The proposed matrix-based kernel subspace meth­
ods generalize their vector-based counterparts, e.g. vector KPCA and vector 
KLDA, in the sense that the matrix KPCA and matrix KLDA provide richer 
representations and capture spatial statistics to some extent. This comes 
from the fact the Gram matrix used in the vector-based kernel methods can 
be derived from that used in the proposed matrix-based kernel methods. 

• Presented in Chapter 9 is an adaptive method for visual tracking which stabi­
lizes the tracker by embedding deterministic linear prediction into stochastic 
diffusion. Numerical solutions have been provided using particle filters with 
the adaptive observation model arising from the adaptive appearance model, 
adaptive state transition model, and adaptive number of particles. Occlusion 
analysis is also embedded in the particle filter. 

• A systematic method for face recognition from a probe video, compared with 
a gallery of still templates is introduced in Chapter 10. A time series state 
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space model is used to accommodate the video and SIS algorithms provide 
the numerical solutions to the model. This probabilistic framework, which 
overcomes many difficulties arising in conventional recognition approaches 
using video, is registration-free and poses no need for selecting good frames. 
It turns out that an immediate recognition decision can be made in our 
framework due to the degeneracy of the posterior probability of the identity 
variable. The conditional entropy can also serve as a good indication for the 
convergence. 

• We presented in Chapter 11 a generic framework of modeling human identity 
for a single image, a group of images, or a video sequence. This framework 
provides a complete statistic description of the identity. Various current 
recognition schemes are just instances of this generic framework. 

12.2 Future Research Directions 
Unconstrained face recognition can be expanded in a multitude of ways. 

The following just lists some potential avenues to explore in the context of the 
proposed approaches: 

• For the symmetric SFS in Chapter 3, ideally we would like to handle sym­
metric objects under different lighting, viewing conditions and projections, 
for example, to handle rotated symmetric objects. Moreover, we expect to 
be able to handle partially symmetric objects by integrating traditional SFS 
and symmetric SFS. The following is a list of future research directions: (i) 
developing symmetric SFS algorithms to handle arbitrarily varying albedo 
and (ii) extending the Lambertian model to more general models, such as 
including specular reflections and multiple lighting sources. 

• In Chapters 4 and 5, we used a Lambertian reflectance model to describe 
the illumination phenomenon. However, the Lambertian reflectance model 
is a rather simple model and unable to handle cast shadows and specular 
regions. Although we employed a simple technique to exclude pixels in cast 
shadow and specular regions, it turns out when the light comes from extreme 
directions (e.g. highly off-frontal ones), the recognition performance drops 
quickly. We need to investigate these lighting conditions. Alternatively, a 
complex illumination model providing a better illumination description can 
be used. 

• In the illuminating light field approach of Chapter 5, we need an image-
based rendering technique to handle novel poses. Some promising works 
along this line are [73, 175, 176]. 

• The boosted regressor proposed in Chapter 6 is very general and can be 
applied to other regression problems. The choices of feature fiinctions are 
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crucial to many applications. All these issues should be further investigated. 
Also, understanding aging of faces is important to the success of face recog­
nition systems. It is of great interest to derive a robust model for facial aging 
across all age categories. 

• Regarding the probability distances on RKHS, possible fiiture works in­
clude (i) how to design or select the kernel function for a given task, be it 
classification or modeling; (ii) evaluating the kernels for set based on the 
derived probabilistic distances (as argued in Section 7.3.5) in a classification 
device such as an SVM for various applications; (iii) utilizing probabilistic 
distances for ICA as in [261]. 

• The key quantity in Chapter 8 is the extended Gram matrix. Using this Gram 
matrix, one can construct reproducing kernel functions that take matrix as 
inputs. For example, it is easy to show that the trace and determinant of the 
extended Gram matrix are positive-definite and hence legitimate reproduc­
ing kernels. Other constructions are also feasible. 

• The visual tracking algorithm of Chapter 9 can be extended in many ways 
[202, 204]. (i) Combining shape information into appearance. Appearance 
and shape are two very important visual cues arguably presented in a com­
plementary fashion [198]. (ii) Utilizing appearance from multiple views. 
Using multiple views can overcome some difficulty in a single view. For 
example, an object might be occluded in one view but not the other one. Us­
ing the multiview geometry, we can infer the movement of the object in the 
occluded view [203]. (iii) Here we mostly model the movement of the fore­
ground object. Joint modeling of foreground and background movements 
is very promising [204,205] since the stabilization obtained by background 
modeling significantly reduces the clutter in the background that confuses 
the foreground tracking algorithm. 

• In simultaneous tracking and recognition of Chapter 10, many issues exist, 
(i) Robustness. Generally speaking, our approach is more robust than still-
image-based approach since we essentially compute the recognition score 
based on all video frames and, in each frame, all kinds of transformed 
versions of the face part corresponding to the sample configurations that 
are considered. However, since we take no explicit measure when handling 
frames with outlier or other unexpected factors, recognition scores based 
on those frames might be low. But, this is a problem for other approaches 
too. The assumption that the identity does not change as time proceeds, i.e., 
p{nt\nt-i) = 5{nt — nt-i), could be relaxed by having nonzero transition 
probabilities between different identity variables. Using nonzero transition 
probabilities will enable us an easier transition to the correct choice in case 
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that the initial choice is incorrectly chosen, making the algorithm more 
robust. 

(ii) Resampling. In the recognition algorithm, the marginal distribution 
{(6i[i\, Wjfî J)}^^! is sampled to obtain the sample set {(6*^^ l)}/=i. This 
may cause problems in principle since there is no conditional independence 
between 9t and nt given j^.j.. However, in a practical sense, this is not a 
big disadvantage because the purpose of resampling is to 'provide chances 
for the good streams (samples) to amplify themselves and hence rejuvenate 
the sampler to produce better results for future states as the system evolves' 
[248]. The resampling scheme can either be simple random sampling with 
weights (like in CONDENSATION), residual sampling, or local Monte Carlo 
methods. 

• Further, in the experimental part of Chapter 11, we can extend our approach 
to perform recognition from video sequences with localization, illumination, 
and pose variations. Again, the SIS methods can be used to accommodate 
temporal continuity. This leads to a very high-dimensional state space to 
explore. EflRcient simulation techniques are desired. In fact, the issue of 
computation load also exist for the efficient algorithm in Chapter 10. There, 
two important numbers affecting the computation are ,/, the number of 
motion samples, and A'̂ , the size of the database, (i) The choice of J is an 
open question in the statistics literature. In general, larger J produces more 
accurate results, (ii) The choice of Â  depends on application. Since a small 
database is used in this experiment, it is not a big issue here. However, the 
computational burden may be excessive if N is large. One possibility is 
to use a continuous parameterized representation, say a as in Chapter 11, 
instead of discrete identity variable n. Now the task reduces to computing 
p{at,Ot\yo.t). 

The approaches taken in this book by no means cover the whole spectrum 
of the unconstrained face recognition problem and address only a small portion 
of all the relevant issues. Some possible important issues, other than those 
addressed in the book, include the following: 

• 3D model-based face matching. 2D-appearance-based face recognition is 
in principle limited because a 2D image is a projection of a 3D model. An 
emerging trend is to directly utilize 3D model in the face matching process 
[132]. A lot of open issues are available: How to capture and represent the 
3D model? How to do matching based on the 3D model? 

• Aging. Aging is a very important topic in unconstrained face recognition. 
Often the stored gallery images are taken well before the probe images. For 
example, passengers hold passports with photos taken when the passport 
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was issued years ago. While one solution is to maintain the gallery images 
up-to-date, a systematic solution is theoretical modeling of the generic affect 
of aging. This modeling is very difficult due to the individualized variation. 
Presented in [136, 138] are some preliminary attempts. So, more research 
efforts are certainly worthwhile. 

• Expression. Facial expression analysis and modeling has attracted a lot 
of attention [45, 62, 63] and some approaches [62] focus on expression 
recognition, i.e., identifying different modalities of facial expression such as 
happy, angry, disgust, etc. Face recognition under expression variation has 
not been fiilly explored. Clearly expression recognition and face recognition 
under expression variation are two related topics. Expression recognition 
and modeling is a crucial component for accurate face recognition under 
expression variation. 

Further, facial expressions manifest themselves in a temporal dimension. 
The manner that an individual poses expressions (in natural contexts) cap­
tures certain behavioral aspect of the face biometric. Utilizing temporal 
information embedded in facial expression for face recognition under ex­
pression variation is an interesting research topic. 

• Distorted imagery. 

Images as one main digital media are to be compressed, stored, transmitted 
and so on. Compression schemes sacrifice image quality for fewer bits 
to encode the image, storage devices are susceptible to various damages, 
transmission channels are often noisy. All these results in distorted images. 
How to perform face recognition accounting for sources of distortions [128] 
is a very practical research topic that needs to be explored. 

• Fusion with other biometrics Even the best face recognition system can­
not perform a perfect job under unconstrained conditions. Fusion of face 
biometrics and other biometrics will boost the overall performance because 
more information is available. Moreover, different biometrics are comple­
mentary. For example, acquisition of iris and fingerprint needs participant's 
cooperation while face and gait can be captured in an noninvasive manner. 
Face is mostly usable in frontal view while gait is most usable in side view. 

• Face recognition system 

To build a reliable and robust face recognition system, one has to consider 
various issues, (i) Computation and storage. How to do the matching in 
real time? How to represent, manage, and store a large scale face database? 
(ii) System engineering. Given a limited budget of resources in camera, 
network, power, etc., how to maximize the performance gain by a smart 
distributing of these resources? (iii) Security issue. How to store the face 
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database in a secure manner? How to avoid fake face image to break in to 
the system? How to securely transmit tlie face image over the network? For 
this, we should leverage knowledge from multimedia and network security, 
cryptography, etc. 



References 

[Books on general topics] 

[I] B. Anderson and J. Moore, Optimal Filtering. New Jersey: Prentice Hall, Engle-wood 
Cliffs, 1979. 

[2] Y. Bar-Shalom and T. Fortmann, 7>ocA/«gfl«£/Z)a;a/4,srac/aft'o«. Academic Press, 1988. 

[3] G. Casella and R. L. Berger, Statistical Inference. Duxbury, 2002. 

[4] T.M. Cover and J.A. Thomas, Elements of Information Theory. Wiley, 1991. 

[5] P. Devijver and J. Kittler, Pattern Recognition: A Statistical Approach. Prentice Hall 
International, 1982. 

[6] A. Doucet, N. d. Freitas, andN. Gordon (Eds.), Sequential Monte Carlo Methods in Practice. 
Springer-Verlag, New York, 2001. 

[7] R. O. Duda, R E. Hart, and D. G. Stork, Pattern Classification. Wiley-Interscience, 2001. 

[8] G. H. Golub and C. F. Van Loan, Matrix Computations. The Johns Hopkins University 
Press, 1996. 

[9] T Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, 
Inference, and Prediction. Springer-Verlag, New York, 2001. 

[10] B. Horn and M. Brooks (Eds.) Shape from Shading. MIT Press, 1989. 

[II] RJ. Huber, Robust statistics. Wiley, 1981. 

[12] I. T. Jolliffe, Principal Component Analysis. New York: Springer-Verlag, 2002. 

[13] KixWhdiCk, Information Theory and Statistics. Wiley, New York, 1959. 

[14] J.S. Liu, Monte Carlo Strtegies in Scientific Computing. Springer, 2001. 

[15] K. V. Mardia, J. T. Kent, and J. M. Bibby, Multivariate Analysis. Academic Press, 1979. 

[16] C. Robert and G. Casella, Monte Carlo Statistical Methods. Springer, 1999. 



226 REFERENCES 

[17] W.J.Kugh, Linear System Theory. Pearson Education, 1995. 

[18] B. Scholkopf and A. Smola, Support Vector Learning. Press, 2002, 

[19] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis. Cambridge 
University Press, 2004. 

[20] M.A. Tanner, Tools for Statistical Inference: Methods for the Exploration of Posterior 
Distributions and Likelihood Functions. Springer, 1996. 

[21] V. N. Vapnik, The Nature of Statistical Learning Theory. Springer-Verlag, New York, 
ISBN 0-387-94559-8, 1995. 

[Books and review papers on face recognition] 

[22] M.S.Bartlett, Face Image Analysis by Unsupervised Learning. Kluwer Academic Pub­
lishers, 2001. 

[23] R. Chellappa, C. L. Wilson, and S. Sirohey, "Human and machine recognition effaces: A 
survey," Proceedings of IEEE, vol. 83, pp. 705-740, 1995. 

[24] S. Gong, S.J. McKenna, Dynamic Vision: From Images to Face Recognition. Imperial 
College Press, 2000. 

[25] P.W. Hallinan, G. Gordon, A. Yuille, R Giblin, and D. Mumford, Two- and Three-
Dimensional Patterns of the Face. A. K. Peters, Ltd., 1999. 

[26] T. Kanade, Computer Recognition of Human Faces. Birhauser, Basel, Switzerland, and 
Stuggart, Germany, 1973. 

[27] S.Z. Li, A.K. Jain (Eds.), Handbook of Face Recognition. Springer-Verlag, 2004. 

[28] H. Wechsler, P.J. Phillips, V. Bruce, F.F. Soulie, and T.S. Huang (Eds.), Face Recognition: 
From Theory to Applications. Springer-Verlag, 1998. 

[29] W. Zhao, R. Chellappa, A. Rosenfeld, and J. Phillips, "Face recognition: A literature 
survey," ACM Computing Surveys, vol. 12, 2003. 

[Biometrics] 

[30] Biometric Catalog. http://www.biomtricscataIog.org. 

[31] Biometric Consortium, http://www.biometrics.org. 

[32] Deparment of Homeland Security (DHS), US-VISIT Program. 
http://www.dhs.goc/dhspublic/interapp/editorial/editorial_0333.xml. 

[33] National Institue of Standards and Technologies (NIST), Biometrics Web Site. 
http://www.nist.gov/biometrics. 

[34] D.M. Blackburn, "Biometrics 101 (version 3.1)" 
http://www.biometricscataIog.org/biometrics/Introduction.asp, March 2004. 

[35] R. Hietmeyer, "Biometric identification promises fast and secure processings of airline 
passengers," The Internationl Civil Aviation Organization Journal, vol. 55, no. 9, pp. 10-
11,2000. 



REFERENCES 221 

[36] P.J. Phillips, R.M. McCabe, and R. Chellappa, "Biometric image processing and recogni­
tion," Proceedings of European Signal Processing Conference, 1998. 

[Psychophysical and neural aspects] 

[37] I. Biederman and P. Kalocsai, "Neural and psychophysical analysis of object and face 
recognition," In Face Recognition: From Theory to Applications, H. Wechsler, P.J. Phillips, 
V. Bruce, F.F. Soulie, and T.S. Huang (Eds.), Springer-Verlag, 1998. 

[38] V. Bruce, Recognizing Faces. Lawrence Erlbaum Associates, London, U.K., 1988. 

[39] V. Bruce, P.J.B. Hancock, and A.M. Burton, "Human face perception and identification," 
In Face Recognition: From Theory to Applications, H. Wechsler, P.J. Phillips, V. Bruce, 
F.F. Soulie, and T.S. Huang (Eds.), Springer-Verlag, 1998. 

[40] A.J. O'Toole, "Psychological and neural perspectives on human faces recognition," In 
Handbook of Face Recognition, S.Z. Li and A.K. Jain (Eds.), Springer, 2004. 

[41] B. Knight and A. Johnston, "The role of movement in face recognition," Visual Cognition, 
vol. 4, pp. 265-274, 1997. 

[Face recognition from a single still image] 

[42] http://sting.cycollege.ac.cy/~alanitis/fgnetaging/index.htm. 

[43] M.S.Barlett, H.M.Ladesand, andT.J. Sejnowski, "Independent component representations 
for face recognition," Proceedings ofSPfE 3299, pp. 528-539, 1998. 

[44] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, "Eigenfaces vs. fisherfaces: Recog­
nition using class specific linear projection," !EEE Trans. Pattern Analysis and Machine 
Intelligence, vol. 19, pp. 711-720, 1997. 

[45] M.J. Black and Y. Yacoob, "Recognizing facial expressions in image sequences using local 
paramterized models of image motion," InternationalJournal of Computer Vision, vol. 25, 
pp. 23-48, 1997. 

[46] T. Cootes, G. Edwards, and C. Taylor, "Active appearance model," European Conference 
on Computer Vision, 1998. 

[47] K. Etemad and R. Chellappa, "Discriminant analysis for recognition of human face images," 
Journal of Optical Society of America A, pp. 1724-1733, 1997. 

[48] T. Huang, Z. Xiong, and Z. Zhang, "Face recognition applications," Handbook of Face 
Recognition, S. Li and A. K. Jain (Eds.), Springer, 2004. 

[49] M.D. Kelly, "Visual identification of people by computer," Tech. rep. AI-130, Stanford Al 
project, Stanform, CA, 1970. 

[50] M. Kirby and L. Sirovich, "Application of Karhunen-Loeve procedure of the characteriza­
tion of human faces," IEEE Trans, on Pattern Analysis and Machine Intelligence, vol. 12, 
pp. 103-108, 1990. 

[51] M. Lades, J.C. Vorbruggen, J. Buhmann, J. Lange, C. v. d. Malsburg, R.P. Wurtz, and 
W. Konen, "Distortion invariant object recognition in the dynamic link architecture," IEEE 
Trans. CompMtera, vol. 42, no. 3, pp. 300-311, 1993. 



228 REFERENCES 

[52] A. Lanitis, C.J. Taylor, and T.F. Cootes, "Automatic interpretation and coding of face 
images using flexible models," IEEE Trans. Pattern Analysis and Machine Intelligence, 
vol. 19, no. 7, pp. 442-455, 1997. 

[53] S.H. Lin, S.Y. Kung, and J.J. Lin, "Face recognition/detection by probabilistic decision 
based neural network," IEEE Trans. Neural Networks, vol. 9, pp. 114-132, 1997. 

[54] C. Liu and H. Wechsler, "Evolutionary pursuit and its applications to face recognition," 
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, pp. 570-582, 2000. 

[55] M.J. Lyons, J. Biudynek, and S. Akamatsu, "Automatic classification of single facial mi-
ages," IEEE Trans. Pattern Analysis and Machine Intelligence, \o\. 21, no. 12, pp. 1357-
1362, 1999. 

[56] B. Moghaddam and A. Pentland, "Probabilistic visual learning for object representation," 
IEEE Trans, on Pattern Analysis and Machine Intelligence, vol. PAMl-19, no. 7, pp. 696-
710, 1997. 

[57] B. Moghaddam, T. Jebara, and A. Pentland, "Bayesian modeling of facial similarity," 
Advances in Neural Information Processing Systems, vol. 11, pp. 910-916, 1999. 

[58] B. Moghaddam, "Principal manifolds and probabilistic subspaces for visual recognition," 
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, pp. 780-788, 2002. 

[59] P.J. Phillips, "Support vector machines applied to face recognition," Advances in Neural 
Information Processing Systems, vol. 11, pp. 803-809, 1998. 

[60] PJ. Phillips, H. Moon, S. Rizvi, and PJ. Rauss, "The FERET evaluation methodology 
fro face-recognition algorithms," IEEE Trans, attern Analysis and Machine Intelligence, 
vol. 22, pp. 1090-1104,2000. 

[61] P.J. Phillips, P. Grother, R.J. Micheals, D.M. Blackburn, E. Tabbssi, and M. Bone, "Face 
recognition vendor test 2002; evaluation report" NISTIR 6965, http://www.frvt.org, 2003. 

[62] Y. Tian, T. Kanade, and J. Cohn, "Recognizing action units of facial expression analysis," 
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, pp. 1-19, 2001. 

[63] Y. Tian, T. Kanade, and J. Cohn, "Recognizing action units of facial expression analysis," 
In Handbook of Face Recognition, S.Z. Li and A.K. Jain (Eds.), Springer, 2004. 

[64] M. Turk and A. Pentland, "Eigenfaces for recognition," Journal of Cognitive Neuroscience, 
vol. 3, pp. 72-86, 1991. 

[65] M.-H. Yang, "Kernel eigenfaces vs. kernel Fisherfaces: Face recognition using kernel meth­
ods," Proceedings of International Conference on Automatic Face and Gesture Recognition, 
2002. 

[66] J. Yang et al, "Two-dimensional PCA: A new approach to appearance-based face repre­
sentation and recognition," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, 
no. 1,2004. 

[67] W. Zhao, R. Chellappa, and A. Krishnaswamy, "Discriminant analysis of principal com­
ponents for face recognition," Proceedings of International Conference on Automatic Face 
andGesture Recognition, pp. 361-341, Nara, Japan, 1998. 



REFERENCES 229 

[68] J. Li, S. Zhou, and C. Shekhar, "A comparison of subspace analysis for face recognition," 
Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Process­
ing, 2003. 

[69] S. Zhou, R. Chellappa, and B, Moghaddam, "Intra-personal kernel space for face recogni­
tion," Proceedings of International Conference on Automatic Face and Gesture Recognition, 
Seoul, Korea, May 2004, 

[70] S. Zhou and R. Chellappa, "Multiple-exemplar discriminant analysis for face recognition," 
Proceedings of International Conference on Pattern Recognition, Cambridge, UK, August 
2004. 

[Face recognition across illumination and poses] 

[71] J. Atick, P. Griffin, and A. Redlich, "Statistical approach to shape from shading: Re-
construnction of 3-dimensional face surfaces from single 2-dimentional images," Neural 
Computation, vol. 8, pp. 1321-1340, 1996. 

[72] V. Blanz and T. Vetter, "Face recognition based on fitting a 3D morphable model," IEEE 
Trans, on Pattern Analysis and Machine Intelligence, vol. 25, pp. 1063-1074, 2003. 

[73] T. Cootes, K. Walker, and C. Taylor, "View-based Active appearance models," Proceedings 
of International Conference on Automatic Face and Gesture Recognition, 2000. 

[74] T. Dovgard and R. Basri, "Statistical Symmetric Shape from Shading for 3D Structure 
Recovery of Faces," Proceedings of European Conference on Computer Vision, Prague, 
Czech, May 2004. 

[75] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, "From few to many: Illumination 
cone models for face recognition under variable lighting and pose," IEEE Trans. Pattern 
Analysis and Machine Intelligence, vol. 23, pp. 643 -660, 2001. 

[76] R. Gross, 1. Matthews, and S. Baker, "Eigen light-fields and face recognition across pose," 
Proceedings oflntenational Conference on Automatic Face and Gesture Recognition, Wash­
ington D.C., 2002. 

[77] R. Gross, I. Matthews, and S. Baker, "Fisher light-fields for face recognition across pose and 
illumination," Proceedings of the German Symposium on Pattern Recognition, Washington 
D.C., 2002. 

[78] R. Gross, 1. Matthews, and S. Baker, "Appearance-based face recognition and light-fields," 
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, no. 4, pp. 449 -
465, April, 2004. 

[79] K. C. Lee, J. Ho, and D. Kriegman, "Nine points of light: acquiring subspaces for face 
recognition under variable lighting," IEEE Conference on Computer Vision and Pattern 
Recognition, pp. 519-526, December 2001. 

[80] N. Ramanathan, A. Roy-Chowdhury and R. Chellappa, "Facial Similarity across Age, 
Disguise, Illumination and Pose," IEEE International Conference on Image Processing, 
Oct 2004. 

[81] A. Pentland, B. Moghaddam, and T. Starner, "View-based and modular eigenspaces for 
face recognition," Proceedings of IEEE Computer Society Conference on Computer Vision 
and Pattern Recognition, Seattle, WA, 1994. 



230 REFERENCES 

[82] S. Romdhani, V. Blanz, and T. Vetter, "Face identification by fitting a 3D morphable model 
using linear shape and texture errror functions," Proc. European Conference on Computer 
Vision, 2002. 

[83] S. Romdhani and T. Vetter, "Efficient, robust and accurate fitting of a 3D morphable model," 
Proceedings of IEEE Internationl Conference on Computer Vision, pp. 59-66, Nice, France, 
2003. 

[84] A. Shashua and T. R. Raviv, "The quotient image: Class based re-rendering and recogni­
tion with varying illuminations," IEEE Trans. Pattern Analysis and Machine Intelligence, 
vol. 23, pp. 129-139,2001. 

[85] T. Sim, S. Baker, and M. Bast, "The CMU pose, illuminatin, and expression (PIE) database," 
Proceedings of International Conference on Automatic Face and Gesture Recognition, pp. 
53-58, Washington D.C., 2002. 

[86] B.V.H. Saxberg, "A modem differential geometric approach to shape from shading," MIT 
Artificial Intelligence Laboratory, Technical Report 1117, 1989. 

[87] T. Vetter and T. Poggio, "Linear object classes and image synthesis from a single example 
image," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, pp. 
733-742, 1997. 

[88] M.A.O. Vasilescu and D. Terzopoulos, "Multilinear analysis of image ensembles: Tensor-
faces," European Conference on Computer Vision, vol. 2350, pp. 447-460, Copenhagen, 
Denmark, May 2002. 

[89] M. Vasilescu and D. Terzopoulos, "Multilinear image analysis for facial recognition," 
Proceedings of International Conference on Pattern Recognition, Quebec City, Canada, 
2002. 

[90] L. Zhang and D. Samaras, "Face recognition under variable lighting using harmonic image 
exemplars," Proceedings of IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition, pp. 19-25, Madison, WA, 2003. 

[91] W. Zhao and R. Chellappa, "Illumination-insensitive face recognition using symmetric 
shape-from-shading," Proceedings of IEEE Computer Society Conference on Computer 
Vision and Pattern Recognition, pp. 286-293, 2000. 

[92] W. Zhao and R. Chellappa, "SFS based view synthesis for robust face recognition," Pro­
ceedings of International Conference on Automatic Face and Gesture Recognition, 2000. 

[93] W. Zhao and R. Chellappa, "Symmetric shape-from-shading using self-ratio images," In-
ternationalJournal of Computer Vision, vol. 45, pp. 55-75, 2001. 

[94] S. Zhou and R. Chellappa, "Rank constrained recognition under unknown illuminations," 
IEEE Intl. Workshop on Analysis and Modeling of Faces and Gestures, Nice, France, 2003. 

[95] S. Zhou, R. Chellappa, and D. Jacobs, "Characterization of human faces under illumination 
variations using rank, integrability, and symmetry constraints," European Conference on 
Computer Vision, Prague, Czech, May 2004. 

[96] S. Zhou and R. Chellappa, "Illuminating light field: Image-based face recognition across 
illuminations and poses," Proceedings of International Conference on Automatic Face and 
Gesture Recognition, Seoul, Korea, May 2004. 



REFERENCES 231 

[97] S. Zhou and R. Chellappa, "Image-based face recognition under illumination and pose 
variantons," Journal of the Optical Society of America, vol. 22, pp. 217-229, 2005. 

[Face recognition from multiple stills, videos, or 3D models] 

[98] O. Arandjelovic and R. Cipolla, "Face recognition from face motion manifolds using robust 
kernel resistor-average distance," IEEE Workshop on Face Processing in Video, Washington 
D.C., USA, 2004. 

[99] O. Arandjelovic, G. Shakhnarovich, J. Fisher, R. Cipolla, andT. Darrell, "Face Recognition 
with Image Sets using Manifold Density Divergence," Proc. IEEE Conference on Computer 
Vision and Pattern Recognition, vol. 1, pages 581-588, San Diego, USA, June 2005. 

[100] G. Aggarwal, A. Roy-Chowdhury, and R. Chellappa, "A system identification approach 
for video-based face recognition," Proceedings of International Conference on Pattern 
Recognition, Cambridge, UK, August 2004. 

[101] C. Beumie and M.R Acheroy, "Automatic face authentication from 3D surface," Proc. of 
British Machine Vision Conference, pp. 449-458, 1998. 

[102] A.M. Bronstein, M.M. Bronstein and R. Kimmel, "Expression-invariant 3D face recog­
nition," Proc. Audio and Video-based Biometric Personal Authentication, pp. 62-69, 2003. 

[103] T. Choudhury, B. Clarkson, T. Jebara, and A. Pentland, "Multimodal person recognition 
using unconstrained audio and video," Proceedings of International Conference on Audio-
and Video-Based Person Authentication, pp. 176-181, Washington D.C., 1999. 

[104] A. Fitzgibbon and A. Zisserman, "Joint manifold distance: a new approach to appear­
ance based clustering," Proceedings of IEEE Conference on Computer Vision and Pattern 
Recognition, Madison, WI, 2003. 

[105] R. Gross and J. Shi, "The CMU Motion of Body (MoBo) Database," CMU-RI-TR-01-I8, 
2001. 

[106] H. Gupta, Contour Based 3D Face Modeling From Monocular Video. Master Thesis, 
University of Maryland, College Park, MD, 2003. 

[ 107] A. Howell and H. Buxton, "Face recognition using radial basis function neural networks," 
Proceedings of British Machine Vision Conference, pp. 455^64, 1996. 

[108] T. Jebara and A. Pentland, "Parameterized structure from motion for 3 D adaptive feedback 
tracking of faces," Proceedings of IEEE Computer Society Conference on Computer Vision 
and Pattern Recognition,'pp. 144-150, Puerto Rico, 1997. 

[109] K. Lee, M. Yang, and D. Kriegman, "Video-based face recognition using probabilistic 
appearance manifolds," Proceedings of IEEE Computer Society Conference on Computer 
Vision and Pattern Recognition, Madison, WI, 2003. 

[110] K. Lee and D. Kriegman, "Online Learning of Probabilistic Appearance Manifolds for 
Video-based Recognition and Tracking," IEEE Conf on Computer Vision and Pattern 
Recognition, San Diego, USA, June 2005. 

[ I l l ] B. Li and R. Chellappa, "Face verification through tracking facial features," Journal of 
Optical Society of America A, vol 18, no. 12, pp. 2969-2981, 2001. 



232 REFERENCES 

[112] B. Li and R. Chellappa, "A generic approach to simultaneous tracking and verification in 
video," IEEE Transaction on Image Processing, vol. 11, no. 5, pp. 530-554, 2002. 

[113] Y. Li, S. Gong, and H. Liddell, "Modelling faces dynamically across views and over time," 
Proceedings of International Conference on Computer Vision, pp. 554 -559, Hawaii, 2001. 

[114] Y. Li, S. Gong, and H. Liddell, "Constructing facial identity surfaces in a nonlinear dis­
criminant space," Proceedings of IEEE Computer Society Conference on Computer Vision 
and Pattern Recognition, Hawaii, 2001. 

[115] X. Liu and T. Chen, "Video-based face recognition using adaptive hidden markov models," 
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Madison, 
Wl, 2003. 

[116] M. Mavridis et al., "The HISCORE face recognition applicaiton: Affordable desktop face 
recognition based on a novel 3D camera," Proc. of Intl. Conference on Augmented Virtual 
Environments and 3D Imaging, 2001. 

[117] S. McKenna and S. Gong, "Non-intrusive person authentication for access control by vi­
sual tracking and face recognition," Proceedings of International Conference on Audio- and 
Video-based Biometric Person Authentication, pp. 177-183, Crans-Montana, Switzerland, 
1997. 

[118] G. Shakhnarovich, J. Fisher, and T. Darrell, "Face recognition from long-term observa­
tions," Proc. European Conference on Computer Vision, Copenhagen, Denmark, 2002. 

[119] J. Steffens, E. Elagin, and LI. Neven, "Personspotter - fast and robust system for human 
detection, tracking, and recognition," Proceedings oflnternationl Conference on Automatic 
Face and Gesture Recognition, pp. 516-521, Nara, Japan, 1998. 

[ 120] H. Wechsler, V. Kakkad, J. Huang, S. Gutta, and V. Chen, "Automatic video-based person 
authentication using the RBF network," Proceedings of International Conference onAudio-
and Video-based Biometric Person Authentication, pp. 85-92, Crans-Montana, Switzerland, 
1997. 

[121] O. Yamaguchi, K. Fukui and K. Maeda, "Face recognition using temporal image se­
quence," Proceedings of International Conference on Automatic Face and Gesture Recog­
nition, Nara, Japan, 1998. 

[122] S. Zhou, V. Krueger, and R. Chellappa, "Face recgnition from video: A condensation ap­
proach," Proceedings of International Conference on Automatic Face and Gesture Recog­
nition, Washington, D.C., USA, May 2002. 

[123] S. Zhou and R. Chellappa, "Probabilistic human Recognition from video," European 
Conference on Computer Vision, vol. 3, pp. 681-697, Copenhagen, Denmark, May 2002. 

[124] V. Krueger and S. Zhou, "Exemplar-based face recgnition from video," European Con­
ference on Computer Vision, Copenhagen, Denmark, 2002. 

[125] R. Chellappa, S. Zhou, and B. Li, "Bayesian methods for probabilistic human recgnition 
from video," Proceedings of IEEE International Conference on Acoustic, Speech, and Signal 
Processing, Orlando, Florida, USA, 2002. 



REFERENCES 233 

[126] S. Zhou and R. Chellappa, "A robust algorithm for probabilistic human recognition from 
video," Proceedings of International Conference on Pattern Recognition, Quebec City, 
Canada, 2002. 

[127] R. Chellappa, V. Krueger, and S. Zhou, "Probabilistic recognition of human faces from 
video," Proceedings of IEEE International Conference on Image Processing, Rochester, 
NY, 2002. 

[128] S. Zhou and R. Chellappa, "Simultaneous tracking and recognition of human faces from 
video," Proceedings of IEEE International Conference on Acoustic, Speech, and Signal 
Processing, 2003. 

[129] S. Zhou, V. Krueger, and R. Chellappa, "Probabilistic recognition of human faces from 
video," Computer Vision and Image Understanding, vol. 91, pp. 214-245, 2003. 

[130] J. Li and S. Zhou, "Probabilistic face recognition with compressed imagery," Proceedings 
of IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, 
Canada, May 2004. 

[131] S. Zhou and R. Chellappa, "Probabilistic identity characterization for face recognition," 
Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recog­
nition, Washington D.C., USA, June 2004, 

[132] S. Zhou, "Face recognition using more than one image; What is more?" Sinohiometrics, 
2004. 

[133] R. Chellappa and S. Zhou, "Face tracking and recognition from video," Handbook of Face 
Recognition, S. Li and A. K. Jain (Eds.), Springer-Verlag, 2005. 

[134] S. Zhou and R. Chellappa, "Face recognition from still images and videos," Handbook of 
Image and Video Processing, A. Bovik (Ed.), Academic Press, 2005. 

[Facial aging] 

[135] G. Givens, J.R. Beveridge, B.A. Draper, P. Grother, and P.J. Phillips, "How Features of 
the Human Face Affect Recognition: a Statitical Comparison of Three Face Recognition 
Algorithms," Proceedings of IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition, vol. 2, pp. 381-388, Washington D.C., USA, June 2004. 

[136] A. Lanitis, C.J. Taylor, and T.F. Cootes, "Toward automatic simulation of aging affects on 
face images," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, pp. 442-455, 
2002. 

[137] A. Lanitis, C. Draganova, and C. Christodoulou, "Comparing Different Classifiers for 
Automatic Age Estimation," IEEE Transactions on Systems, Man and Cybernetics - Part 
B, vol. 34, no. 1, pp. 621-628, February, 2004. 

[138] N. Ramanathan and R. Chellappa, "Face Verification across Age Progression," Proceed­
ings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 
San Diego, USA, June 2005. 

[139] A.J. O'Toole, T. Vetter, H. Volz, and M.E. Salter, "Three-Dimensional caricatures of 
human heads: distinctiveness and the perception of facial age," Perception, vol. 26, pp. 719-
732, 1997. 



234 REFERENCES 

[140] J.B. Pittenger and R.E. Shaw, "Aging Faces as Viscal-Elastie Events : Implications for 
a Theory of Nonrigid Shape Perception," Journal of Experimental Psychology : Human 
Perception and Performance, vol. 1, no. 4, pp. 374-382, 1975. 

[141] B.Tiddeman, M. Burt, and D. Perret, "Prototyping and Transforming Facial Texture for 
Perception Research," Computer Graphics and Applications, IEEE, vol. 21, no. 5, pp. 42-50, 
July-August, 2001. 

[142] Y. Wu, N.M. Thalmann, and D. Thalmann, "A Dynamic wrinkle model in facial animation 
and skin aging," Journal of Visualization and Computer Animation, vol. 6, pp. 195-205, 
1995. 

[Lighting, illumination, and shape from shading] 

[ 143] R. Basri and D. Jacobs, "Photometric stereo with general, unknown lighting," Proceedings 
of IEEE Conference on Computer Vision and Pattern Recognition, vol. II, pp. 374-381, 
Hawaii, 2001. 

[ 144] R. Basri and D. Jacobs, "Lambertian reflectance and linear subspaces," IEEE Transactions 
on Pattern Analysis and Machine Intelligence, vol. 25, pp. 218-233, 2003. 

[145] P.N. Belhumeur and D.J. Kriegman, "What is the set of images of an object under all 
possible illumination conditions?" International Journal of Computer Vision, vol. 28, pp. 
245-260, 1998. 

[146] P. Belhumeur, D. Kriegman, and A. Yuille, "The bas-relief ambiguity," International 
Journal of Computer Vision, vol. 35, pp. 33^4 , 1999. 

[147] M. Bichsel and A. Pentland, "A Simple Algorithm for Shape from Shading," Proceedings 
of IEEE Conference on Computer Vision and Pattern Recognition, pp. 459-465, 1992. 

[148] P. Dupuis and J. Oliensis, "Direct Method for Reconstructing Shape from Shading," Proc. 
Conference on Computer Vision and Pattern Recognition, pp. 453-458, 1992. 

[149] R. T. Frankot and R. Chellappa, "A method for enforcing integrability in shape from 
shaging problem," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 10, pp. 
439^51, 1988. 

[150] H. Hayakawa, "Photometric stereo under a light source with arbitrary motion," Journal 
of Optical Society of America, A, vol. 11, 1994. 

[151] B.K.P. Horn, Shape from Shading: A Method for Obtaining the Shape of a Smooth Opaque 
Object from One View. PhD Thesis, Massachusetts Institute of Technology, 1970. 

[ 152] B.K.P. Horn, "Height and Gradient from Shading," Int. Journal of Computer Vision, vol. 5, 
pp. 37-75, 1990. 

[ 153] K. Ikeuchi and B.K.P. Horn, "Numerical Shape from Shading and Occluding Boundaries," 
Artificial Intelligence, vol. 17, pp. 141-184, 1981. 

[154] D.W. Jacobs, P.N. Belhumeur, and R. Basri, "Comparing Images under Variable Illu­
mination," Proc. Conference on Computer Vision and Pattern Recognition, pp. 610-617, 
1998. 



REFERENCES 235 

[155] C.H. Lee and A. Rosenfeld, "Improved Methods of Estimating Shape from Shading 
Using the Light Source Coordinate System," Shape from Shading. Eds. B.K.P. Horn and 
M.J. Brooks, MIT Press: Cambridge, MA, pp. 323-569, 1989. 

[156] S.K. Nayar, K. Ikeuchi, and T. Kanade, "Surface Reflection: Physical and Geometrical 
Perspectives," IEEE Trans, on Pattern Analysis and Machine Intelligence, vol. 13, pp. 611-
634, 1991. 

[ 157] J. Oliensis, "Uniqueness in Shape from Shading," Int. Journal of Computer Vision, vol. 6, 
pp. 75-104, 1991. 

[158] R. Onnand A. Bruckstein, "Integrability Disambiguates Surface Recovery in Two-Image 
Photometric Stereo," Int. Journal of Computer Vision, vol. 5, pp. 105-113, 1990. 

[159] A.P. Pentland, "Finding the Illumination Directions," Journal of the Optical Society of 
America A, vol. 72, pp. 448-455, 1982. 

[160] R. Ramamoothi and P. Hanrahan, "On the relationship between radiance and irradiance: 
Determining the illumination from images of a convex lambertian object," Journal of the 
Optical Society of America (JOSA A), vol. 18, pp. 2448-2459, 2001. 

[161] A. Shashua, "On photometric issues in 3d visual recognition from a single 2D image," 
International Journal of Computer Vision, vol. 21, pp. 99-122, 1997. 

[162] I. Shimshoni, Y. Moses, and M. Lindenbaum, "Shape reconstruction of 3D bilaterally 
symmetric surfaces," International Journal of Computer Vision, vol. 39, pp. 97-100, 2000. 

[163] P.S. Tsai and M. Shah, "Shape from shading using linear approximation," Journal of 
Image and Vision Computing, vol. 12, pp. 487-498, 1994. 

[164] G.Q. Wei and G. Hirzinger, "Parametric shape-from-shading by radial basis functions," 
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, pp. 353-365, 
1997. 

[165] L.B. Wolff and E. Angelopoulou, "3-D stereo using photometric ratios," Proc. European 
Conference on Computer Vision, pp. 247-258, 1994. 

[166] R. Woodham, "Photometric method for determining surface orientation from multiple 
images," Optical Engineering, vol. 19, pp. 139-144, 1980. 

[167] Z. Yue and R. Chellappa, "Pose-normailzed view synthesis of a symmetric object using 
a single image," Proceedings of Asian Conference on Computer Vision, 2004. 

[168] A.L. Yuille, D. Snow, R. Epstein, and P.N. Belhumeur, "Determining generative models 
of objects under varying illumination: Shape and albedo from multiple images using svd 
and integrability," Internationl Journal of Computer Vision, vol. 35, pp. 203-222, 1999. 

[169] R. Zhang, P.S. Tsai, J.E. Cryer, and M. Shah, "Shape from Shading: a survey", IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 21, pp. 690-706, 1999. 

[ 170] Q. F. Zheng and R. Chellappa, "Estimation of illuminant direction, albedo and shape from 
shading," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, pp. 
680-702, 1991. 

[Tracking, detection, and registration] 



236 REFERENCES 

[171] A. Azarbayejani and A. Pentland, "Recursive estimation of motion, structure, and focal 
length," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 17, pp. 562-575, 
1995. 

[172] A. Bergen, P. Anadan, K. Hanna, and R. Hingorani, "Hierarchical model-based motion 
estimation," European Conference on Computer Vision, pp. 237-252, Stockholms, Sweden, 
1992. 

[173] M.J. Black and A.D. Jepson, "Eigentracking: Robust matching and tracking of articulated 
objects using a view-based representation," European Conference on Computer Vision, 
vol. 1, pp. 329-342, Cambridge, UK, 1996. 

[ 174] M.J. Black and D.J. Fleet, "Probabilistic detection and tracking of motion discontinuities," 
Proceedings of International Conference on Computer Vision, vol. 2, pp. 551-558, Greece, 
1999. 

[175] M.E. Brand, "Morphable 3D Models from Video," Proceedings of IEEE Conference on 
Computer Vision and Pattern Recognition, Hawaii, 2001. 

[ 176] C. Bregler, A. Hertzmann, and H. Biermann, "Recovering nonrigid 3D shape fomr image 
streams," Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 
Hilton Head, SC, 2000.' 

[177] T. J. Broida, S. Chandra, and R. Chellappa, "Recursive techniques for estimation of 3-d 
translation and rotation parameters from noisy image sequences," IEEE Trans. Aerospace 
and Electronic Systems, vol. AES-26, pp. 639-656, 1990. 

[178] D. Comaniciu, V. Ramesh, and P. Meer, "Real-time tracking of non-rigid objects using 
mean shift," Proceedings of IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition, vol. 2, pp. 142-149, Hilton Head, SC, 2000. 

[179] N.J. Gordon, D.J. Salmond, and A.P.M. Smith, "Novel approach to nonlinear/non-
gaussian bayesian state estimation," lEE Proceedings on Radar and Signal Processing, 
vol. 140, pp. 107-113, 1993. 

[180] G. D. Hager and P. N. Belhumeur, "Efficient region tracking with parametric models of 
geometry and illumination," IEEE Trans, on Pattern Analysis and Machine Intelligence, 
vol. 20, pp. 1025-1039, 1998. 

[181] M. Irani, "Multi-frame optical flow estimation using subspace constraints," Proceedings 
of International Conference on Computer Vision, pp. 626-633, Greece, 1999. 

[182] M. Irani and P. Anandan, "Factorization with Uncertainty," European Conference on 
Computer Vision, pp. 539-553, Dublin, Ireland, 2000. 

[183] M. Isard and A. Blake, "Contour tracking by stochastic propagation of conditional den­
sity," European Conference on Computer Vision, pp. 343-356, Cambridge, UK, 1996. 

[ 184] M. Isard and A. Blake, "ICONDENSATION: Unifying low-level and high-level tracking 
in a stochastic framework," Euporean Conference on Computer Vision, vol. 1, pp. 1(>1-1?, 1, 
Freiburg, Germany, 1998. 

[185] A. D. Jepson, D. J. Fleet, and T. El-Maraghi, "Robust online appearance model for visual 
tracking," Proceedings of IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition, vol. 1, pp. 415-422, Hawaii, 2001. 



REFERENCES 237 

[186] F. Jurie and M. Dhome, "A simple and efficient template matching algorithm," Proceed­
ings of International Conference on Computer Vision, vol. 2, pp. 544-549, Vancouver, BC, 
2001. 

[187] Q. Ke and T. Kanade, "A subspace approach to layer extraction," Proceedings of IEEE 
Conference on Computer Vision and Pattern Recognition, Hawaii, 2001. 

[188] B. Lucas and T. Kanade, "An iterative image registration technique with an application 
to stereo vision," International Joint Conference on Artifical Intelligence, 1981. 

[189] B. North, A. Blake, M. Isard, and J. Rittscher, "Learning and classification of complex 
dynamics," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, pp. 1016-1034, 
2000. 

[ 190] G. Qian and R. Chellappa, "Structure from motion using sequential monte carlo methods," 
Proceedings of International Conference on Computer Vision, pp. 614 -621, Vancouver, 
BC, 2001. 

[191] C. Rasmussen and G. Hager, "Probabilistic data association methods for tracking complex 
visual objects," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, 
no. 6, pp. 560-576, 2001. 

[192] H. Sidenbladh, M. J. Black, and D. J. Fleet, "Stochastic tracking of 3d human figures 
using 2d image motion," European Conference on Computer Vision, vol. 2, pp. 702-718, 
Copenhagen, Denmark, 2002. 

[193] J. Sullivan and J. Rittscher, "Guiding random particle by deterministic search," Proceed­
ings of International Conference on Computer Vision, vol. 1, pp. 323 -330, Vancouver, BC, 
2001. 

[194] C. Tomasi and T. Kanade, "Shape and motion from image streams under orthography: a 
factorization method," InternationalJournal of Computer Vision, vol. 9, no. 2, pp. 137-154, 
1992. 

[195] K. Toyama and A. Blake, "Probabilistic tracking in a metric space," Proceedings of 
International Conference on Computer Vision, pp. 50-59, Vancouver, BC, 2001. 

[196] J. Vermaak, P. Peraz, M. Gangnet, and A. Blake, "Towards improved obsevation models 
for visual tracking: selective adaption," European Conference on Computer Vision, pp. 
645-660, Copenhagen, Denmark, 2002. 

[ 197] P. Voila and M. Jones, "Robust real-time object detection," Second Intl. Workshop on Stat, 
and Comp. Theories of Vision, Vancouver, BC, 2001. 

[ 198] Y. Wu and T. S. Huang, "A co-inference approach to robust visual tracking," Proceedings 
of International Confererence on Computer Vision, vol. 2, pp. 26-33, Vancouver, BC, 2001. 

[199] C. Yang, R. Duraiswami, A. Elgammal, and L. Davis, "Real-time kernel-based tracking 
in joint feature-spatial spaces," Tech. Report CS-TR-4567, Univ. of Maryland, 2004. 

[200] S. Zhou, R. Chellappa, and B. Moghaddam, "Adaptive visual tracking and recognition 
using particle filters," Proceedings of IEEE International Conference on Multimedia & 
Expo, Baltimore, USA, 2003. 



238 REFERENCES 

[201] S. Zhou, R. Chellappa, and B, Moghaddam, "Appearance tracking using adaptive models 
in a particle filter," Proceedings of Asian Conference on Computer Vision, Korea, January 
2004. 

[202] J. Shao, S. Zhou, and R. Chellappa, "Appearance-based visual tracking and recognition 
with trilinear tensor," Proceedings of IEEE International Conference on Acoustics, Speech, 
and Signal Processing, Montreal, Canada, May 2004. 

[203] Z. Yue, S. Zhou, and R. Chellappa, "Robust two-camera visual tracking with homog-
raphy," Proceedings of IEEE International Conference on Acoustics, Speech, and Signal 
Processing, Montreal, Canada, May 2004. 

[204] J. Shao, S. Zhou, and Q. Zheng, "Robust appearance-based tracking of moving object 
from moving platform," Proceedings of International Conference on Pattern Recognition, 
Cambridge, UK, August 2004. 

[205] J. Shao, S. Zhou, and R. Chellappa, "Simultaneous background and foreground modeling 
for tracking in surveillance video," Proceedings of IEEE International Conference on Image 
Processing, Singapore, October 2004. 

[206] S. Zhou, R. Chellappa, and B. Moghaddam, "Visual tracking and recognition using 
appearance-adaptive models in particle filters," IEEE Transactions on Image Processing, 
vol. II, pp. 1434-1456, November 2004. 

[Others in computer vision and graphics] 

[207] A. Agarwal and B. Triggs, "3D human pose from silhouette by revelance vector regres­
sion," Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition, 2004. 

[208] M. J. Black and A. D. Jepson, "A probabilistic framework for matching temporal trajecto­
ries," Proceedings of International Conference on Computer Vision, pp. 176-181, Greece, 
1999. 

[209] M. Bertero, T. Poggio, and V. Torre, "Ill-posed Problems in Early Vision," MIT Artificial 
Intelligence Laboratory, Technical Report 924, 1987. 

[210] R. Bolle and D. Cooper, "On optimally combining pieces of information with application 
to estimating 3-d complex-object position from range data," IEEE Trans, on Pattern Analysis 
and Machine Intelligence, vol. 8, pp. 619-638, 1986. 

[211] A.R. Bruss, "The Eikonal Equation: Some Results Applicable to Computer Vision," Jour­
nal ofMathmetical Physics, vol. 23, pp. 890-896, 1982. 

[212] T.F. Cootes, G.J. Edwards, and C.J. Taylor, "Active appearance models," IEEE Trans, on 
Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 681-685, 2001. 

[213] D. Forsyth, "Shape from texture and integrability," Proc. International Conference on 
Computer Vision, pp. 447^53, Vancouver, EC, 2001. 

[214] W. T. Freeman and J. B. Tenenbaum, "Learning bilinear models for two-factor problems 
in vision," Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 
Puerto Rico, 1997. 



REFERENCES 239 

[215] P. Fua, "Regularized bundle adjustment to model heads from image sequences without 
caiihraiiA Aai^r InternationlJournal of Computer Vision, vol. 38, pp. 153-157, 2000. 

[216] S.J. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen, "The lumigraph," Proceedings 
ofSIGGRAPH, pp. 43-54, New Orleans, LA, USA, 1996. 

[217] D. Jacobs, "Linear fitting with missing data for structure-from-motion," Computer Vision 
and Image Understanding, vol. 82, pp. 57-81, 2001. 

[218] A. Laurentini, "The visual hull concept for silhouette-based image understanding," IEEE 
Trans. Pattern Analysis and Machine Intelligences, vol. 16, no. 2, pp. 150-162, 1994. 

[219] M. Levoy and P. Hanrahan, "Light field rendering," Proceedings of ACM SIGGRAPH, 
New Orleans, LA, USA, 1996. 

[220] J. Liu, J. Mundy, and A. Zisserman, "Grouping and Structure Recovery for Images of Ob­
jects with Finite Rotational Symmetry," Proceedings of the Asian Conference on Computer 
Vision, 1995. 

[221] W. Matusik, C. Buehler, R. Raskar, S. Gortler, and L. McMillan, "Image-based visual 
hulls," Proceedings ofSIGGRAPH, pp. 369 - 374, New Orleans, LA, USA, 2000. 

[222] K. Okada, D. Comaniciu, and A. Krishanan, "Scale selection for anisotropic scale-space: 
Application for volumetric tumor characterization," Proceedings of IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition, vol. I, pp. 594-601, Washington 
D.C., 2004. 

[223] C. Poelman and T. Kanade, "A paraperpective factorization method for shape and motion 
reco\ery," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 3, pp. 206-
218, 1997. 

[224] A. Roy Chowdhury and R. Chellappa, "Face reconstruction from video using uncertainty 
analysis and a generic model," Computer Vision and Image Understanding, vol. 91, pp. 
188-213,2003. 

[225] X.S. Zhou el al, "A unified fi'amework for uncertainty propagation in automatic shape 
tracking," Proceedings of IEEE Computer Society Conference on Computer Vision and 
Pattern Recognition, Washington D.C., 2004 

[226] Y. Shan, Z. Liu, and Z. Zhang "Model-based bundle adjustment with applicaiton to face 
modeling," Proceedings of Internationl Conference on Computer Vision, pp. 645-651, Van­
couver, BC, 2001. 

[227] S. Wang, W. Zhu, and Z. Liang, "Shape deformation: SVM regression and application 
to medical image segmentation," Proceedings of International Conference on Computer 
Vision, 2001. 

[228] J. Xiao, J. Chai, and T. Kanade, "A closed-form solution to non-rigid shape and motion 
recovery," European Conference on Computer Vision, 2004. 

[229] J. Xiao, S. Baker, I. Matthews, and T. Kanade, "Real-time combined 2D+3D active ap­
pearance models," IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition, Washington, DC, 2004. 



240 REFERENCES 

[Statistical analysis and computing] 

[230] B. Adhikara and D. Joshi, "Distance discrimination et resume exhaustif" Pubis. Inst. 
Statis., vol. 5, pp. 57-74, 1956. 

[231] X. Boyen and D. Koller, "Tractable inference for complex stochastic processes," Pro­
ceedings of the 14th Annual Conference on Uncertainty in AI (UAI), pp. 33 - 42, Madison, 
Wisconsin, 1998. 

[232] M. Brand, "Incremental singular value decomposition of uncertain data with missing 
values," European Conference on Computer Vision, pp. Idl-llQ, Copenhagen, Denmark, 
2002. 

[233] A. Bhattacharyya, "On a measure of divergence between two statistical populations de­
fined by their probability distributions," Bull. Calcutta Math. Soc, vol. 35, pp. 99-109, 
1943. 

[234] H. Chemoff, "A measure of asymptotic etficiency of tests for a hypothesis based on a sum 
of observations," Annals of Math. Stat., vol. 23, pp. 493-507, 1952. 

[235] H. Copas, "Regression, prediction, and shrinkage," J. R. Statist. Soc. B, vol. 45, pp.311-
354, 1983. 

[236] A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete 
data via the em algorithm." J. Roy. Statist. Soc B, vol. 39, 1977. 

[237] A. Doucet, S. J. Godsill, and C. Andrieu, "On sequential monte carlo sampling methods 
forbayesian filtering," Statistics and Computing, vol. 10, no. 3, pp. 197-209, 2000. 

[238] N. Duffy and D. Helmbold, "Boosting methods for regression," Machine Learning, 
vol. 47, pp. 153-200,2002. 

[239] D. Fox, "KLD-sampling: Adaptive particle filters and mobile robot localization," Neural 
Information Processing Systems (NIPS), 2001. 

[240] Y. Freund and R. Schapire, "A decision-theoretic generalization of on-line learning and an 
application to boosting," J. of Computer and System Sciences, vol. 55, no. 1, pp. 119-139, 
1997. 

[241 ] J. Friedman, T. Hastie, and R. Tibshirani, "Additive logistive regression: A statistical view 
of boosting," The Annals of Statistics, vol. 28, no. 2, pp. 337-374, 2000. 

[242] J. Friedman, "Greedy function approxiamtion: A gradient boosting machine," The Annals 
of Statistics, vol. 28, no. 2, 2001. 

[243] A. Hyvarinen, "Survey on Independent Component Analysis," Neural Computing Sur­
veys, vol. 2, pp. 94-128, 1999. 

[244] T. Kailath, "The divergance and Bhattacharyya distance measures in signal selection," 
IEEE Trans, on Comm. Tech., vol. COM-15, pp. 52-60, 1967. 

[245] G. Kitagawa, "Monte carlo filter and smoother for non-gaussian nonlinear state space 
models," J. Computational and Graphical Statistics, yo\. 5, pp. 1-25, 1996. 



REFERENCES 241 

[246] R. Kondor and T, Jebara,"A Kernel Between Sets of Vectors," Proc. of International 
Conference on Machine Learning, ICML, 2003. 

[247] T. Lissack and K. Fu, "Error estimation in pattern recognition via L-distance between 
posterior density functions," IEEE Trans. Information Theory, vol. 22, pp. 34-45, 1976. 

[248] J. S. Liu and R. Chen, "Sequential monte carlo for dynamic systems," Journal of the 
American Statistical Association, vo\. 93, pp. 1031-1041, 1998. 

[249] P. Mahalanobis, "On the generalized distance in statistics," Proc. National Inst. Sci. (In­
dia), vol 12, pp. 49-55, 1936. 

[250] K. Matusita, "Decision rules based on the distance for problems of fit, two samples and 
estimation,"/4««. Math. Stat., vol. 26, pp. 631-640, 1955. 

[251 ] S. Roweis and L. Saul, "Nonlinear dimensionality reduction by locally linear embedding," 
Science, vol. 290, no. 5500, pp. 2323-2326, Dececember 2000. 

[252] E. Patrick and F. Fisher, "Nonparametric feature selection," IEEE Trans. Information 
Theory, vol. 15, pp. 577-584, 1969. 

[253] P. Penev and J. Atick, "Local feature analysis: A general statistical theory for object 
representation," Networks: Computations in Neural Systems, vol. 7, pp. 477-500, 1996. 

[254] R. Schapire, Y. Freund, P. Bartlett, and W.S. Lee, "Boosting the margin: A new explanation 
for the effectiveness of voting methods," The Annals of Statistics, vol. 26, pp. 1651-1686, 
1998. 

[255] H. Shum, K. Ikeuchi, and R. Reddy, "Principal component analysis with missing data and 
its applications to polyhedral object modeling," IEEE Trans. Pattern Analysis and Machine 
Intelligence, vol. 17, pp. 854-867, 1995. 

[256] J.B. Tenenbaum, V. de Silva, and J.C. Langford, "A Global Geometric Framework for 
Nonlinear Dimensionality Reduction," Science, vol. 290, no. 5500, pp. 2319-2323, Decem­
ber 2000. 

[257] M. E. Tipping and C. M. Bishop, "Mixtures of probabilistic principal component analy­
sers," Neural Computation, vol. 11, no. 2, pp. 443^82, 1999. 

[258] M. E. Tipping and C. M. Bishop, "Probabilistic principal component analysis," Journal 
of the Royal Statistical Society, Series B,vo\. 6\,pp. 611-622, 1999. 

[259] T. Wiberg, "Computation of principal components when data are missing," Proc. Second 
Symp. Computational Statistics, pp. 229-236, 1976. 

[260] S. Zhou, B. Georgescu, X.S. Zhou, and D. Cominiciu, "Image based regression using 
boosting method," Proceedings of International Conference on Compuer Vision, Beijing, 
China 2005. 

[Machine learning and Icernel metliods] 

[261 ] F. Bach and M.I. Jordan, "Kernel independent component analysis," Journal of Machine 
Learning Research, vol. 3, pp. 1^8, 2002. 



242 REFERENCES 

[262] F. Bach and M. I. Jordan, "Learning graphical models with Mercer kernels," Advances in 
Neural Information Processing Systems, 2002. 

[263] G. Baudat and F. Anouar, "Generalized discriminant analysis using a kernel approach," 
Neural Computation, vol, 12, pp. 2385-2404, 2000. 

[264] F. Girosi, M. Jones, and T. Poggio, "Regularization theory and neutral networks archi­
tectures," Neural Computation, vol. 7, pp. 219-269, 1995. 

[265] T. Jebara and R. Kondor, "Bhattarcharyya and expected likelihood kernels," Conference 
on Learning Theory (COLT), 2003. 

[266] R. Kondor and T. Jebara, "A kernel between sets of vectors," Intenational Conference on 
Machine Learning (ICML), 2003. 

[267] J. Mercer, "Functions of positive and negative type and their connection with the thoery 
of integral equations," Philos. Trans. Roy. Soc. London, vol. A 209, pp. 415^46, 1909. 

[268] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K.-R. Miiller, "Fisher discriminant 
analysis with kernels," in Neural Networks for Signal Processing IX, Y.-H. Hu, J. Larsen, 
E. Wilson, and S. Douglas, Eds. IEEE, 1999, pp. 4 1 ^ 8 . 

[269] R Moreno, R Ho, and N. Vasconcelos, "A Kullback-Leibler divergence based kernel 
for svm classfication in multimedia applications," Neural Information Processing Systems, 
2003. 

[270] K.R. Miiller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf, "An introducation to 
kernel-based learning algorithms," IEEE Trans. Neutral Networks, vol. 12, pp. 181-202, 
2001. 

[271] A. Ng, M. Jordan, and Y. Weiss, "On spectral clustering: analysis and an algorithm," 
Neural Information Processing Systems, 2002. 

[272] B. Scholkopf, A. Smola, and K.-R. Miiller, "Nonlinear component analysis as a kernel 
eigenvalue pToh\em," Neural Computation, \o\. 10, pp. 1299-1319, 1998. 

[273] M. Tipping, "Sparse kernel prinicipal component analysis," Neural Information Process­
ing Systems, 2001. 

[274] C. K. I. Williams, "On a connection between kernel PCA and metric muhidimensional 
scaling," Neural Information Processing Systems, 2001. 

[275] L. Wolf and A. Shashua, "Kernel principal angles for classification machines with applica­
tions to image sequence interpretation," IEEE Computer Society Conference on Computer 
Vision and Pattern Recognition, Madison, WI, 2003. 

[276] S. Zhou, "Probabilistic analysis of kernel principal components: classification and mixture 
modeling," CfAR TechnialReport, CAR-TR-993, 2003. 

[277] S. Zhou and R. Chellappa, "From sample similarity to ensemble similarity: Probabilistic 
distance measures in reproducing kernel Hilbert space," SCR Technical Report SCR-05-
TR-774,2005. 

[278] S. Zhou, "Matrix-based kernel methods," SCR Technical Report SCR-05-TR-773, 2005. 



Index 

161 

163 

3D morphable model, 86, 107 
Adaptive visual tracking, 159 

adaptive velocity, 164 
handling occlusion, 167 
online appearance model(OAM), 
adaptive noise, 166 
adaptive observation model, 161 
adaptive particle number, 166 
adaptive state transition model, 
robust statistics, 167 

Age estimation 
image based regression, 111 

Analysis-by-synthesis, 207 
Bilinear analysis, 74, 105 
Biometrics, 3 
Boosting, 114 

feature selection, 117 
Curse of dimensionality, 112 
Expectation Maximization (EM), 162 
Face recognition across aging progression, 121 

Bayesian age-difference classifier, 122 
similarity measure, 126 

Face recognition under variations, 12 
facial aging, 111 
generalized photometric stereo, 71 
illuminating light field, 97 
symmetric shape from shading, 45 

Face recognition via kernel learning, 12 
matrix-based kernel subspace analysis, 145 
probabilistic distance measures in RKHS, 131 

Face symmetry constraint, 52, 77 
Face tracking and recognition from videos, 12 

probabilistic identity characterization, 201 
simultaneous tracking and recognition, 177 
adaptive visual tracking, 159 

Facial aging, 111 
face recognition across aging progression, 121 
age estimation, 111 

Facial recognition technology(FERET), 5 
gallery set, 5 

identification, 4 
probe set, 5 
traning set, 5 
verification, 4 
watch list, 5 

Generalized photometric stereo, 71 
bilinear analysis, 74 
class-specific albedo-shape matrix, 76 
class-specific ensemble, 72 
face symmetry constraint, 77 
illumination-invariant face recognition, 82 
illumination variation, 71 
integrability constraint, 76 
rank constraint, 75 
factorization, 76 
separating illumination, 77 

Identity, 28 
identity signature, 205 

llluminatipg light field, 97 
bilinear analysis, 105 
pose and illuminafion variations, 97 
light field, 98 
principal component analysis(PCA), 98 
two-fold SVD, 101 

Illumination-invariant face recognition, 82 
multiple light sources, 87 
single light source, 82 

Illumination, 27 
Image and view synthesis, 68 
Image based regression, 111 

boosting, 113 
regularization, 113 
appearance variation, 112 
curse of dimensionality, 112 
decision stump, 117 
Haar filter feature, 117 
incremental feature selection, 118 
multiple output, 112 
shrinkage, 116 



244 INDEX 

storage and computation, 112 
Kernel method, 21, 131, 145 

kernel for set, 140 
matrix KLDA, 148 
matrix KPCA, 146 
kernel LDA(K.LDA), 145 
kernel PCA(KPCA), 145 
kernel trick, 21 
nonlinear manifold, 21 

Lambertian illumination model, 48 
attached shadow, 19 
cast shadow, 19 
nonlinearity, 87 
shadow handling, 89 

Laplace's method, 209, 212 
Least square (LS), 164 
Light field, 27, 98 
Manifold, 11,35 
Matrix-based kernel subspace analysis, 145 

matrix KPCA, 146, 148 
Monte Carlo simulation, 208 

importance sampling, 209 
Motion of Body (MoBo) database, 184 
Particle filter, 25, 159 
Photometric stereo, 71 

object-specific ensemble, 71 
subspace, 73 

PIE database, 83 
Pose, 27 
Probabilistic distance measures in RKHS, 131 

Bhattacharyya distance, 132 
Chernoff distance, 132 
kernel for set, 140 
KL divergence, 132 
Lissack-Fu distance, 132 
Mahalanobis distance, 134 
Patrick-Fisher distance, 132 

Probabilistic identity characterization, 201 
analysis-by-synthesis, 207 
asymptotic behaviors, 206 
Bayesian decision rule, 205 
Monte Carlo simulation, 208 
non-informative prior, 202 
subspace identity encoding, 207 
unified framework, 201 

Probability density function (PDF), 34 
Prototype image, 46 
Regression, 22 

image based regression, 111 
kernel ridge regression (KRR), 23 
nonparameteric kernel regression (NPR), 23 
support vector regression (SVR), 24 

Regularization, 22, 113 
Reproducing kernel Hilbert space (RKHS), 14, 21, 

132 
Robust statistics, 167 
Self-ratio image, 53 
Sequential importance sampling (SIS), 26, 181 
Sequential important sampling(SIS) 

resampling, 182 
Shape from shading, 45 

face symmetry constraint, 52 
image gradient constraint, 49 
image irradiation equation, 48 
Lambertian illumination model, 48 
prototype image, 46 
surface integrability constraint, 49 

Shrinkage, 116 
Simultaneous tracking and recognition, 177 

computafional efficiency, 182 
entropy, 181 
posterior probability of identity, 180 
sequential importance sampling (SIS), 181 
still-to-video, 177, 184 

State space time series, 24, 159 
observation model, 24, 160 
particle filter, 25 
sequential importance sampling (SIS), 26 
state transition model, 24, 159 

Structure from motion (SflVI), 27, 38 
Subspace analysis, 20 

principal component analysis (PCA), 20 
independent component analysis (ICA), 20 
linear discriminant analysis (LDA), 20 

Surface integrability constraint, 49, 76 
Symmetric shape from shading, 54 

self-ratio image, 53 
symmetric source-from-shading, 66 

Three-level hierarchy, 6 
face pattern and face recognition, 10 
general pattern and pattern recognition, 6 
visual pattern and visual recognition, 8 

Visual hull, 27 
Visual tracking, 41 

deterministic, 41 
stochastic, 41 




